1 | \section{EKFfull Class Reference} |
---|
2 | \label{classEKFfull}\index{EKFfull@{EKFfull}} |
---|
3 | Extended \doxyref{Kalman}{p.}{classKalman} Filter in full matrices. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libKF.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for EKFfull:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=102pt]{classEKFfull__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for EKFfull:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[height=400pt]{classEKFfull__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | {\bf EKFfull} ({\bf RV} rvx, {\bf RV} rvy, {\bf RV} rvu)\label{classEKFfull_67ac4de96fd025197da767fe0472c7f7} |
---|
26 | |
---|
27 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
28 | void {\bf set\_\-parameters} ({\bf diffbifn} $\ast$pfxu, {\bf diffbifn} $\ast$phxu, const mat Q0, const mat R0)\label{classEKFfull_fc753106e0d4cf68e4f2160fd54458c0} |
---|
29 | |
---|
30 | \begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item |
---|
31 | void {\bf bayes} (const vec \&dt)\label{classEKFfull_8ca46f177e395fa714bbd8bd29ea43e0} |
---|
32 | |
---|
33 | \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item |
---|
34 | void {\bf set\_\-est} (vec mu0, mat P0)\label{classEKFfull_7bb76ea74c144ea0b36db99f94750b7b} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em set estimates \item\end{CompactList}\item |
---|
37 | {\bf epdf} \& {\bf \_\-epdf} ()\label{classEKFfull_4080d68f79dade36ccf547d57e64bdc2} |
---|
38 | |
---|
39 | \begin{CompactList}\small\item\em dummy! \item\end{CompactList}\item |
---|
40 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
41 | |
---|
42 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
43 | const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
44 | |
---|
45 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
46 | double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
47 | |
---|
48 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
49 | \subsection*{Public Attributes} |
---|
50 | \begin{CompactItemize} |
---|
51 | \item |
---|
52 | vec {\bf mu}\label{classKalmanFull_fb5aec635e2720cc5ac31bc01c18a68a} |
---|
53 | |
---|
54 | \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item |
---|
55 | mat {\bf P}\label{classKalmanFull_b75dc059e84fa8ffc076203b30f926cc} |
---|
56 | |
---|
57 | \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\item |
---|
58 | bool \textbf{evalll}\label{classKalmanFull_c17d69e125acd2673e6688fd86dd3f84} |
---|
59 | |
---|
60 | \item |
---|
61 | double \textbf{ll}\label{classKalmanFull_3aa4bf6128980d0627413dcf9cd07308} |
---|
62 | |
---|
63 | \end{CompactItemize} |
---|
64 | \subsection*{Protected Attributes} |
---|
65 | \begin{CompactItemize} |
---|
66 | \item |
---|
67 | int \textbf{dimx}\label{classKalmanFull_c5353e66238ed717dba79e0499118226} |
---|
68 | |
---|
69 | \item |
---|
70 | int \textbf{dimy}\label{classKalmanFull_761fadcc12dd4cb83bb8b5e27db01947} |
---|
71 | |
---|
72 | \item |
---|
73 | int \textbf{dimu}\label{classKalmanFull_609a4a0fcde78fd7aac2f01b34e952c9} |
---|
74 | |
---|
75 | \item |
---|
76 | mat \textbf{A}\label{classKalmanFull_554de4c953761380cd5a14a02542e007} |
---|
77 | |
---|
78 | \item |
---|
79 | mat \textbf{B}\label{classKalmanFull_ac7ade2a603a1b05419e36c5aae21755} |
---|
80 | |
---|
81 | \item |
---|
82 | mat \textbf{C}\label{classKalmanFull_5a9a8326ae17b519109fcdad59ea74a3} |
---|
83 | |
---|
84 | \item |
---|
85 | mat \textbf{D}\label{classKalmanFull_8f992a2d6b66d2e8bd9174b28cc0f074} |
---|
86 | |
---|
87 | \item |
---|
88 | mat \textbf{R}\label{classKalmanFull_bbd2dab10da47237a5f0d9e55fd61f24} |
---|
89 | |
---|
90 | \item |
---|
91 | mat \textbf{Q}\label{classKalmanFull_a8777c1fe67763395d3ddeb326239851} |
---|
92 | |
---|
93 | \item |
---|
94 | mat \textbf{\_\-Pp}\label{classKalmanFull_905823cf4157a11b8b824e45809dac55} |
---|
95 | |
---|
96 | \item |
---|
97 | mat \textbf{\_\-Ry}\label{classKalmanFull_b1b946b3a43f7d86cf4b6dc0dd6e3210} |
---|
98 | |
---|
99 | \item |
---|
100 | mat \textbf{\_\-iRy}\label{classKalmanFull_c7d915386a9d60b1bc309ae9166764f6} |
---|
101 | |
---|
102 | \item |
---|
103 | mat \textbf{\_\-K}\label{classKalmanFull_4c8354ea4801529f3071189ddd10d760} |
---|
104 | |
---|
105 | \item |
---|
106 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
107 | |
---|
108 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
109 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
110 | |
---|
111 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
112 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
113 | |
---|
114 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} |
---|
115 | \subsection*{Friends} |
---|
116 | \begin{CompactItemize} |
---|
117 | \item |
---|
118 | std::ostream \& {\bf operator$<$$<$} (std::ostream \&os, const {\bf KalmanFull} \&kf)\label{classKalmanFull_86ba216243ed95bb46d80d88775d16af} |
---|
119 | |
---|
120 | \begin{CompactList}\small\item\em print elements of KF \item\end{CompactList}\end{CompactItemize} |
---|
121 | |
---|
122 | |
---|
123 | \subsection{Detailed Description} |
---|
124 | Extended \doxyref{Kalman}{p.}{classKalman} Filter in full matrices. |
---|
125 | |
---|
126 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
127 | |
---|
128 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
129 | \item |
---|
130 | work/git/mixpp/bdm/estim/{\bf libKF.h}\item |
---|
131 | work/git/mixpp/bdm/estim/libKF.cpp\end{CompactItemize} |
---|