root/doc/latex/classIMpmsm2o.tex @ 255

Revision 255, 10.9 kB (checked in by smidl, 16 years ago)

doc

RevLine 
[234]1\hypertarget{classIMpmsm2o}{
2\section{IMpmsm2o Class Reference}
3\label{classIMpmsm2o}\index{IMpmsm2o@{IMpmsm2o}}
4}
5State evolution model for a PMSM drive and its derivative with respect to $x$
6
7
8{\tt \#include $<$pmsm.h$>$}
9
10Inheritance diagram for IMpmsm2o:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
[255]14\includegraphics[width=59pt]{classIMpmsm2o__inherit__graph}
[234]15\end{center}
16\end{figure}
17Collaboration diagram for IMpmsm2o:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
[255]21\includegraphics[width=88pt]{classIMpmsm2o__coll__graph}
[234]22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{
28void \hyperlink{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{set\_\-parameters} (double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0)}
29\label{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}
30
31\begin{CompactList}\small\item\em Set mechanical and electrical variables. \item\end{CompactList}\item 
32\hypertarget{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{
33vec \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval} (const vec \&x0, const vec \&u0)}
34\label{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}
35
36\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$. \item\end{CompactList}\item 
[255]37\hypertarget{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{
38vec \hyperlink{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{eval2o} (const vec \&du)}
39\label{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}
40
41\begin{CompactList}\small\item\em eval 2nd order Taylor expansion, MUST be used only as a follow up AFTER \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval()}!! \item\end{CompactList}\item 
[234]42void \hyperlink{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true)
43\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item 
44void \hyperlink{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true)
45\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item 
[255]46\hypertarget{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{
47vec \hyperlink{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{eval} (const vec \&cond)}
48\label{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}
[234]49
50\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ). \item\end{CompactList}\item 
[255]51\hypertarget{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{
52int \hyperlink{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{\_\-dimx} () const }
53\label{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}
[234]54
55\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
[255]56\hypertarget{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{
57int \hyperlink{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{\_\-dimu} () const }
58\label{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}
[234]59
60\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
[255]61\hypertarget{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{
62virtual void \hyperlink{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{condition} (const vec \&val)}
63\label{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}
[234]64
65\begin{CompactList}\small\item\em function substitutes given value into an appropriate position \item\end{CompactList}\item 
[255]66\hypertarget{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{
67int \hyperlink{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{\_\-dimy} () const }
68\label{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}
[234]69
70\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
71\subsection*{Protected Attributes}
72\begin{CompactItemize}
73\item 
74\hypertarget{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c}{
75double \textbf{Rs}}
76\label{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c}
77
78\item 
79\hypertarget{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f}{
80double \textbf{Ls}}
81\label{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f}
82
83\item 
84\hypertarget{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838}{
85double \textbf{dt}}
86\label{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838}
87
88\item 
89\hypertarget{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775}{
90double \textbf{Ypm}}
91\label{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775}
92
93\item 
94\hypertarget{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a}{
95double \textbf{kp}}
96\label{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a}
97
98\item 
99\hypertarget{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3}{
100double \textbf{p}}
101\label{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3}
102
103\item 
104\hypertarget{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d}{
105double \textbf{J}}
106\label{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d}
107
108\item 
109\hypertarget{classIMpmsm2o_38253f515b9b35ab3a536f4871287025}{
110double \textbf{Mz}}
111\label{classIMpmsm2o_38253f515b9b35ab3a536f4871287025}
112
113\item 
[255]114\hypertarget{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{
115double \hyperlink{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{dia}}
116\label{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}
[234]117
[255]118\begin{CompactList}\small\item\em store first derivatives for the use in second derivatives \item\end{CompactList}\item 
119\hypertarget{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac}{
120double \textbf{dib}}
121\label{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac}
122
123\item 
124\hypertarget{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f}{
125double \textbf{dom}}
126\label{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f}
127
128\item 
129\hypertarget{classIMpmsm2o_b2164f89815f3194027fdd562246f238}{
130double \textbf{dth}}
131\label{classIMpmsm2o_b2164f89815f3194027fdd562246f238}
132
133\item 
134\hypertarget{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{
135double \hyperlink{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{d2t}}
136\label{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}
137
138\begin{CompactList}\small\item\em d2t = dt$^\wedge$2/2, cth = cos(th), sth=sin(th) \item\end{CompactList}\item 
139\hypertarget{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f}{
140double \textbf{cth}}
141\label{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f}
142
143\item 
144\hypertarget{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3}{
145double \textbf{sth}}
146\label{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3}
147
148\item 
149\hypertarget{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a}{
150double \textbf{iam}}
151\label{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a}
152
153\item 
154\hypertarget{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc}{
155double \textbf{ibm}}
156\label{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc}
157
158\item 
159\hypertarget{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e}{
160double \textbf{omm}}
161\label{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e}
162
163\item 
164\hypertarget{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6}{
165double \textbf{thm}}
166\label{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6}
167
168\item 
169\hypertarget{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd}{
170double \textbf{uam}}
171\label{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd}
172
173\item 
174\hypertarget{classIMpmsm2o_3309f761c288a3fc149fae787cad252c}{
175double \textbf{ubm}}
176\label{classIMpmsm2o_3309f761c288a3fc149fae787cad252c}
177
178\item 
179\hypertarget{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{
180RV \hyperlink{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{rvx}}
181\label{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}
182
[234]183\begin{CompactList}\small\item\em Indentifier of the first rv. \item\end{CompactList}\item 
[255]184\hypertarget{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{
185RV \hyperlink{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{rvu}}
186\label{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}
[234]187
188\begin{CompactList}\small\item\em Indentifier of the second rv. \item\end{CompactList}\item 
[255]189\hypertarget{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{
190int \hyperlink{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{dimx}}
191\label{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}
[234]192
193\begin{CompactList}\small\item\em cache for rvx.count() \item\end{CompactList}\item 
[255]194\hypertarget{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{
195int \hyperlink{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{dimu}}
196\label{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}
[234]197
198\begin{CompactList}\small\item\em cache for rvu.count() \item\end{CompactList}\item 
[255]199\hypertarget{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{
200int \hyperlink{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{dimy}}
201\label{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}
[234]202
203\begin{CompactList}\small\item\em Length of the output vector. \item\end{CompactList}\end{CompactItemize}
204
205
206\subsection{Detailed Description}
207State evolution model for a PMSM drive and its derivative with respect to $x$.
208
209\subsection{Member Function Documentation}
210\hypertarget{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{
211\index{IMpmsm2o@{IMpmsm2o}!dfdx\_\-cond@{dfdx\_\-cond}}
212\index{dfdx\_\-cond@{dfdx\_\-cond}!IMpmsm2o@{IMpmsm2o}}
213\subsubsection[dfdx\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdx\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full} = {\tt true})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
214\label{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}
215
216
217Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
218
219\begin{Desc}
220\item[Parameters:]
221\begin{description}
222\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
223\end{Desc}
224
225
[255]226Reimplemented from \hyperlink{classbdm_1_1diffbifn_651184f808a35f236dbfea21aca1b6ac}{bdm::diffbifn}.\hypertarget{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{
[234]227\index{IMpmsm2o@{IMpmsm2o}!dfdu\_\-cond@{dfdu\_\-cond}}
228\index{dfdu\_\-cond@{dfdu\_\-cond}!IMpmsm2o@{IMpmsm2o}}
229\subsubsection[dfdu\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdu\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full} = {\tt true})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
230\label{classIMpmsm2o_27f9d89bce832056f747d985df77a726}
231
232
233Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
234
235\begin{Desc}
236\item[Parameters:]
237\begin{description}
238\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
239\end{Desc}
240
241
[255]242Reimplemented from \hyperlink{classbdm_1_1diffbifn_6ea1dc7a482601b29c5ba36a52d20d07}{bdm::diffbifn}.
[234]243
244The documentation for this class was generated from the following file:\begin{CompactItemize}
245\item 
246work/git/mixpp/pmsm/pmsm.h\end{CompactItemize}
Note: See TracBrowser for help on using the browser.