root/doc/latex/classIMpmsm2o.tex @ 280

Revision 280, 10.6 kB (checked in by smidl, 16 years ago)

progress...

RevLine 
[234]1\hypertarget{classIMpmsm2o}{
2\section{IMpmsm2o Class Reference}
3\label{classIMpmsm2o}\index{IMpmsm2o@{IMpmsm2o}}
4}
5{\tt \#include $<$pmsm.h$>$}
6
[280]7Inheritance diagram for IMpmsm2o::\begin{figure}[H]
[234]8\begin{center}
9\leavevmode
[280]10\includegraphics[height=4cm]{classIMpmsm2o}
[234]11\end{center}
12\end{figure}
[280]13
14
15\subsection{Detailed Description}
16State evolution model for a PMSM drive and its derivative with respect to $x$. \subsection*{Public Member Functions}
[234]17\begin{CompactItemize}
18\item 
19\hypertarget{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{
20void \hyperlink{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{set\_\-parameters} (double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0)}
21\label{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}
22
23\begin{CompactList}\small\item\em Set mechanical and electrical variables. \item\end{CompactList}\item 
24\hypertarget{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{
25vec \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval} (const vec \&x0, const vec \&u0)}
26\label{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}
27
28\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$. \item\end{CompactList}\item 
[255]29\hypertarget{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{
30vec \hyperlink{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{eval2o} (const vec \&du)}
31\label{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}
32
33\begin{CompactList}\small\item\em eval 2nd order Taylor expansion, MUST be used only as a follow up AFTER \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval()}!! \item\end{CompactList}\item 
[234]34void \hyperlink{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true)
35\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item 
36void \hyperlink{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true)
37\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item 
[255]38\hypertarget{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{
39vec \hyperlink{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{eval} (const vec \&cond)}
40\label{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}
[234]41
42\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ). \item\end{CompactList}\item 
[255]43\hypertarget{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{
44int \hyperlink{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{\_\-dimx} () const }
45\label{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}
[234]46
47\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
[255]48\hypertarget{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{
49int \hyperlink{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{\_\-dimu} () const }
50\label{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}
[234]51
52\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
[255]53\hypertarget{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{
54virtual void \hyperlink{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{condition} (const vec \&val)}
55\label{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}
[234]56
57\begin{CompactList}\small\item\em function substitutes given value into an appropriate position \item\end{CompactList}\item 
[255]58\hypertarget{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{
59int \hyperlink{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{\_\-dimy} () const }
60\label{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}
[234]61
62\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
63\subsection*{Protected Attributes}
64\begin{CompactItemize}
65\item 
66\hypertarget{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c}{
67double \textbf{Rs}}
68\label{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c}
69
70\item 
71\hypertarget{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f}{
72double \textbf{Ls}}
73\label{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f}
74
75\item 
76\hypertarget{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838}{
77double \textbf{dt}}
78\label{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838}
79
80\item 
81\hypertarget{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775}{
82double \textbf{Ypm}}
83\label{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775}
84
85\item 
86\hypertarget{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a}{
87double \textbf{kp}}
88\label{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a}
89
90\item 
91\hypertarget{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3}{
92double \textbf{p}}
93\label{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3}
94
95\item 
96\hypertarget{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d}{
97double \textbf{J}}
98\label{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d}
99
100\item 
101\hypertarget{classIMpmsm2o_38253f515b9b35ab3a536f4871287025}{
102double \textbf{Mz}}
103\label{classIMpmsm2o_38253f515b9b35ab3a536f4871287025}
104
105\item 
[255]106\hypertarget{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{
107double \hyperlink{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{dia}}
108\label{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}
[234]109
[255]110\begin{CompactList}\small\item\em store first derivatives for the use in second derivatives \item\end{CompactList}\item 
111\hypertarget{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac}{
112double \textbf{dib}}
113\label{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac}
114
115\item 
116\hypertarget{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f}{
117double \textbf{dom}}
118\label{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f}
119
120\item 
121\hypertarget{classIMpmsm2o_b2164f89815f3194027fdd562246f238}{
122double \textbf{dth}}
123\label{classIMpmsm2o_b2164f89815f3194027fdd562246f238}
124
125\item 
126\hypertarget{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{
127double \hyperlink{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{d2t}}
128\label{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}
129
130\begin{CompactList}\small\item\em d2t = dt$^\wedge$2/2, cth = cos(th), sth=sin(th) \item\end{CompactList}\item 
131\hypertarget{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f}{
132double \textbf{cth}}
133\label{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f}
134
135\item 
136\hypertarget{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3}{
137double \textbf{sth}}
138\label{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3}
139
140\item 
141\hypertarget{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a}{
142double \textbf{iam}}
143\label{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a}
144
145\item 
146\hypertarget{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc}{
147double \textbf{ibm}}
148\label{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc}
149
150\item 
151\hypertarget{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e}{
152double \textbf{omm}}
153\label{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e}
154
155\item 
156\hypertarget{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6}{
157double \textbf{thm}}
158\label{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6}
159
160\item 
161\hypertarget{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd}{
162double \textbf{uam}}
163\label{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd}
164
165\item 
166\hypertarget{classIMpmsm2o_3309f761c288a3fc149fae787cad252c}{
167double \textbf{ubm}}
168\label{classIMpmsm2o_3309f761c288a3fc149fae787cad252c}
169
170\item 
171\hypertarget{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{
172RV \hyperlink{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{rvx}}
173\label{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}
174
[234]175\begin{CompactList}\small\item\em Indentifier of the first rv. \item\end{CompactList}\item 
[255]176\hypertarget{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{
177RV \hyperlink{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{rvu}}
178\label{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}
[234]179
180\begin{CompactList}\small\item\em Indentifier of the second rv. \item\end{CompactList}\item 
[255]181\hypertarget{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{
182int \hyperlink{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{dimx}}
183\label{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}
[234]184
185\begin{CompactList}\small\item\em cache for rvx.count() \item\end{CompactList}\item 
[255]186\hypertarget{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{
187int \hyperlink{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{dimu}}
188\label{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}
[234]189
190\begin{CompactList}\small\item\em cache for rvu.count() \item\end{CompactList}\item 
[255]191\hypertarget{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{
192int \hyperlink{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{dimy}}
193\label{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}
[234]194
195\begin{CompactList}\small\item\em Length of the output vector. \item\end{CompactList}\end{CompactItemize}
196
197
198\subsection{Member Function Documentation}
199\hypertarget{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{
200\index{IMpmsm2o@{IMpmsm2o}!dfdx\_\-cond@{dfdx\_\-cond}}
201\index{dfdx\_\-cond@{dfdx\_\-cond}!IMpmsm2o@{IMpmsm2o}}
202\subsubsection[dfdx\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdx\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full} = {\tt true})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
203\label{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}
204
205
206Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
207
208\begin{Desc}
209\item[Parameters:]
210\begin{description}
211\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
212\end{Desc}
213
214
[255]215Reimplemented from \hyperlink{classbdm_1_1diffbifn_651184f808a35f236dbfea21aca1b6ac}{bdm::diffbifn}.\hypertarget{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{
[234]216\index{IMpmsm2o@{IMpmsm2o}!dfdu\_\-cond@{dfdu\_\-cond}}
217\index{dfdu\_\-cond@{dfdu\_\-cond}!IMpmsm2o@{IMpmsm2o}}
218\subsubsection[dfdu\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdu\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full} = {\tt true})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
219\label{classIMpmsm2o_27f9d89bce832056f747d985df77a726}
220
221
222Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
223
224\begin{Desc}
225\item[Parameters:]
226\begin{description}
227\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
228\end{Desc}
229
230
[255]231Reimplemented from \hyperlink{classbdm_1_1diffbifn_6ea1dc7a482601b29c5ba36a52d20d07}{bdm::diffbifn}.
[234]232
233The documentation for this class was generated from the following file:\begin{CompactItemize}
234\item 
[261]235pmsm.h\end{CompactItemize}
Note: See TracBrowser for help on using the browser.