\hypertarget{classIMpmsm2o}{ \section{IMpmsm2o Class Reference} \label{classIMpmsm2o}\index{IMpmsm2o@{IMpmsm2o}} } State evolution model for a PMSM drive and its derivative with respect to $x$. {\tt \#include $<$pmsm.h$>$} Inheritance diagram for IMpmsm2o:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=59pt]{classIMpmsm2o__inherit__graph} \end{center} \end{figure} Collaboration diagram for IMpmsm2o:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=88pt]{classIMpmsm2o__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{ void \hyperlink{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d}{set\_\-parameters} (double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0)} \label{classIMpmsm2o_abdefc0467678a05abf12f5c77eaf49d} \begin{CompactList}\small\item\em Set mechanical and electrical variables. \item\end{CompactList}\item \hypertarget{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{ vec \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval} (const vec \&x0, const vec \&u0)} \label{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41} \begin{CompactList}\small\item\em Evaluates $f(x0,u0)$. \item\end{CompactList}\item \hypertarget{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{ vec \hyperlink{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89}{eval2o} (const vec \&du)} \label{classIMpmsm2o_cf66e75d9e532b0a1c2135b34ac57c89} \begin{CompactList}\small\item\em eval 2nd order Taylor expansion, MUST be used only as a follow up AFTER \hyperlink{classIMpmsm2o_86e04b5118e567ea7a2540059f553f41}{eval()}!! \item\end{CompactList}\item void \hyperlink{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true) \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item void \hyperlink{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&A, bool full=true) \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{ vec \hyperlink{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{eval} (const vec \&cond)} \label{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3} \begin{CompactList}\small\item\em Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ). \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{ int \hyperlink{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{\_\-dimx} () const } \label{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{ int \hyperlink{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{\_\-dimu} () const } \label{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{ virtual void \hyperlink{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{condition} (const vec \&val)} \label{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e} \begin{CompactList}\small\item\em function substitutes given value into an appropriate position \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{ int \hyperlink{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{\_\-dimy} () const } \label{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c}{ double \textbf{Rs}} \label{classIMpmsm2o_a6514cda776819b65fd9e41a1a6a798c} \item \hypertarget{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f}{ double \textbf{Ls}} \label{classIMpmsm2o_bef34361d7602b1a75c5b9f701bce40f} \item \hypertarget{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838}{ double \textbf{dt}} \label{classIMpmsm2o_399e2df590d6425a01e47c6deaa7e838} \item \hypertarget{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775}{ double \textbf{Ypm}} \label{classIMpmsm2o_99af79af69627fae52ec8fa8e167f775} \item \hypertarget{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a}{ double \textbf{kp}} \label{classIMpmsm2o_993cf4903bce863c6b7fb2355411db4a} \item \hypertarget{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3}{ double \textbf{p}} \label{classIMpmsm2o_8644abe49171d006cbf9bff2844816a3} \item \hypertarget{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d}{ double \textbf{J}} \label{classIMpmsm2o_01a151f4ec2818e39537bebcbb8b152d} \item \hypertarget{classIMpmsm2o_38253f515b9b35ab3a536f4871287025}{ double \textbf{Mz}} \label{classIMpmsm2o_38253f515b9b35ab3a536f4871287025} \item \hypertarget{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{ double \hyperlink{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6}{dia}} \label{classIMpmsm2o_5b668744a1e5189f324897a62b9c3ea6} \begin{CompactList}\small\item\em store first derivatives for the use in second derivatives \item\end{CompactList}\item \hypertarget{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac}{ double \textbf{dib}} \label{classIMpmsm2o_48e7403b2c5a93d2af64d618df39b7ac} \item \hypertarget{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f}{ double \textbf{dom}} \label{classIMpmsm2o_46e40d43c0872e8a1fe33d85b2c44a0f} \item \hypertarget{classIMpmsm2o_b2164f89815f3194027fdd562246f238}{ double \textbf{dth}} \label{classIMpmsm2o_b2164f89815f3194027fdd562246f238} \item \hypertarget{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{ double \hyperlink{classIMpmsm2o_74954dedce055db9ee50d53790e8341c}{d2t}} \label{classIMpmsm2o_74954dedce055db9ee50d53790e8341c} \begin{CompactList}\small\item\em d2t = dt$^\wedge$2/2, cth = cos(th), sth=sin(th) \item\end{CompactList}\item \hypertarget{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f}{ double \textbf{cth}} \label{classIMpmsm2o_b013ef9a7017357ccaebf5c023d5ec0f} \item \hypertarget{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3}{ double \textbf{sth}} \label{classIMpmsm2o_a246a4f23d0de166041919fed2bd2bf3} \item \hypertarget{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a}{ double \textbf{iam}} \label{classIMpmsm2o_c7a8e9d8815971fd1bf38770ebd2067a} \item \hypertarget{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc}{ double \textbf{ibm}} \label{classIMpmsm2o_3efbccc942d804ef69270d77c14b7abc} \item \hypertarget{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e}{ double \textbf{omm}} \label{classIMpmsm2o_559e00fa27deb6e2ffca76b889a8a24e} \item \hypertarget{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6}{ double \textbf{thm}} \label{classIMpmsm2o_49764a5de43ce718cebcaa045a0b40f6} \item \hypertarget{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd}{ double \textbf{uam}} \label{classIMpmsm2o_61b88b671c492021476d7db49b29d0cd} \item \hypertarget{classIMpmsm2o_3309f761c288a3fc149fae787cad252c}{ double \textbf{ubm}} \label{classIMpmsm2o_3309f761c288a3fc149fae787cad252c} \item \hypertarget{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{ RV \hyperlink{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{rvx}} \label{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb} \begin{CompactList}\small\item\em Indentifier of the first rv. \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{ RV \hyperlink{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{rvu}} \label{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320} \begin{CompactList}\small\item\em Indentifier of the second rv. \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{ int \hyperlink{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{dimx}} \label{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e} \begin{CompactList}\small\item\em cache for rvx.count() \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{ int \hyperlink{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{dimu}} \label{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0} \begin{CompactList}\small\item\em cache for rvu.count() \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{ int \hyperlink{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{dimy}} \label{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62} \begin{CompactList}\small\item\em Length of the output vector. \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} State evolution model for a PMSM drive and its derivative with respect to $x$. \subsection{Member Function Documentation} \hypertarget{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713}{ \index{IMpmsm2o@{IMpmsm2o}!dfdx\_\-cond@{dfdx\_\-cond}} \index{dfdx\_\-cond@{dfdx\_\-cond}!IMpmsm2o@{IMpmsm2o}} \subsubsection[dfdx\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdx\_\-cond (const vec \& {\em x0}, \/ const vec \& {\em u0}, \/ mat \& {\em A}, \/ bool {\em full} = {\tt true})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} \label{classIMpmsm2o_0a3e125df1e53821e08accbd4960d713} Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \begin{Desc} \item[Parameters:] \begin{description} \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description} \end{Desc} Reimplemented from \hyperlink{classbdm_1_1diffbifn_651184f808a35f236dbfea21aca1b6ac}{bdm::diffbifn}.\hypertarget{classIMpmsm2o_27f9d89bce832056f747d985df77a726}{ \index{IMpmsm2o@{IMpmsm2o}!dfdu\_\-cond@{dfdu\_\-cond}} \index{dfdu\_\-cond@{dfdu\_\-cond}!IMpmsm2o@{IMpmsm2o}} \subsubsection[dfdu\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void IMpmsm2o::dfdu\_\-cond (const vec \& {\em x0}, \/ const vec \& {\em u0}, \/ mat \& {\em A}, \/ bool {\em full} = {\tt true})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} \label{classIMpmsm2o_27f9d89bce832056f747d985df77a726} Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \begin{Desc} \item[Parameters:] \begin{description} \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description} \end{Desc} Reimplemented from \hyperlink{classbdm_1_1diffbifn_6ea1dc7a482601b29c5ba36a52d20d07}{bdm::diffbifn}. The documentation for this class was generated from the following file:\begin{CompactItemize} \item work/git/mixpp/pmsm/pmsm.h\end{CompactItemize}