root/doc/latex/classKalman.tex @ 30

Revision 28, 4.7 kB (checked in by smidl, 17 years ago)

prelozitelna verze

  • Property svn:eol-style set to native
Line 
1\section{Kalman$<$ sq\_\-T $>$ Class Template Reference}
2\label{classKalman}\index{Kalman@{Kalman}}
3\doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form. 
4
5
6{\tt \#include $<$libKF.h$>$}
7
8Inheritance diagram for Kalman$<$ sq\_\-T $>$:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=77pt]{classKalman__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for Kalman$<$ sq\_\-T $>$:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=70pt]{classKalman__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf Kalman} (int dimx, int dimu, int dimy)\label{classKalman_96958a5ebfa966d892137987f265083a}
26
27\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
28{\bf Kalman} (mat A0, mat B0, mat C0, mat D0, sq\_\-T R0, sq\_\-T Q0, sq\_\-T P0, vec mu0)\label{classKalman_83118f4bd2ecbc70b03cfd573088ed6f}
29
30\begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 
31void {\bf bayes} (const vec \&dt, bool {\bf evalll}=true)\label{classKalman_e945d9205ca14acbd83ba80ea6f72b8e}
32
33\begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 
34virtual void {\bf bayes} (const vec \&dt)=0
35\begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 
36void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9}
37
38\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
39{\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077}
40
41\begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize}
42\subsection*{Public Attributes}
43\begin{CompactItemize}
44\item 
45vec {\bf mu}\label{classKalman_3063a3f58a74cea672ae889971012eed}
46
47\begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item 
48sq\_\-T {\bf P}\label{classKalman_188cd5ac1c9e496b1a371eb7c57c97d3}
49
50\begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item 
51double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979}
52
53\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
54bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}
55
56\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize}
57\subsection*{Protected Attributes}
58\begin{CompactItemize}
59\item 
60int \textbf{dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb}
61
62\item 
63int \textbf{dimy}\label{classKalman_ba17b956df1e38b31fbbc299c8213b6a}
64
65\item 
66int \textbf{dimu}\label{classKalman_b0153795a1444b6968a86409c778d9ce}
67
68\item 
69mat \textbf{A}\label{classKalman_5e02efe86ee91e9c74b93b425fe060b9}
70
71\item 
72mat \textbf{B}\label{classKalman_dc87704284a6c0bca13bf51f4345a50a}
73
74\item 
75mat \textbf{C}\label{classKalman_86a805cd6515872d1132ad0d6eb5dc13}
76
77\item 
78mat \textbf{D}\label{classKalman_d69f774ba3335c970c1c5b1d182f4dd1}
79
80\item 
81sq\_\-T \textbf{R}\label{classKalman_11d171dc0e0ab111c56a70f98b97b3ec}
82
83\item 
84sq\_\-T \textbf{Q}\label{classKalman_9b69015c800eb93f3ee49da23a6f55d9}
85
86\item 
87mat \textbf{\_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132}
88
89\item 
90vec \textbf{\_\-yp}\label{classKalman_30b7461989185d3d02cf42b8e2a37649}
91
92\item 
93sq\_\-T \textbf{\_\-Ry}\label{classKalman_477dca07d91ea1a1f41d51bb0229934f}
94
95\item 
96sq\_\-T \textbf{\_\-iRy}\label{classKalman_15f1a793210750a7e4642fcd948b24c5}
97
98\end{CompactItemize}
99\subsection*{Friends}
100\begin{CompactItemize}
101\item 
102std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf KalmanFull} \&kf)\label{classKalman_86ba216243ed95bb46d80d88775d16af}
103
104\end{CompactItemize}
105
106
107\subsection{Detailed Description}
108\subsubsection*{template$<$class sq\_\-T$>$ class Kalman$<$ sq\_\-T $>$}
109
110\doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form.
111
112\subsection{Member Function Documentation}
113\index{Kalman@{Kalman}!bayes@{bayes}}
114\index{bayes@{bayes}!Kalman@{Kalman}}
115\subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt  [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}
116
117
118Incremental Bayes rule.
119
120\begin{Desc}
121\item[Parameters:]
122\begin{description}
123\item[{\em dt}]vector of input data \end{description}
124\end{Desc}
125
126
127The documentation for this class was generated from the following file:\begin{CompactItemize}
128\item 
129work/mixpp/bdm/estim/{\bf libKF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.