1 | \hypertarget{classPF}{ |
---|
2 | \section{PF Class Reference} |
---|
3 | \label{classPF}\index{PF@{PF}} |
---|
4 | } |
---|
5 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$libPF.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for PF:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=62pt]{classPF__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for PF:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=92pt]{classPF__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classPF_e99f0d866721405dd281e315ecb690aa}{ |
---|
28 | \hyperlink{classPF_e99f0d866721405dd281e315ecb690aa}{PF} (const \hyperlink{classRV}{RV} \&rv0, \hyperlink{classmpdf}{mpdf} \&par0, \hyperlink{classmpdf}{mpdf} \&obs0, int n0)} |
---|
29 | \label{classPF_e99f0d866721405dd281e315ecb690aa} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
32 | \hypertarget{classPF_04d38fbcc0348b558212f530d9ec183e}{ |
---|
33 | void \hyperlink{classPF_04d38fbcc0348b558212f530d9ec183e}{set\_\-est} (const \hyperlink{classepdf}{epdf} \&epdf0)} |
---|
34 | \label{classPF_04d38fbcc0348b558212f530d9ec183e} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Set posterior density by sampling from epdf0. \item\end{CompactList}\item |
---|
37 | void \hyperlink{classPF_64f636bbd63bea9efd778214e6b631d3}{bayes} (const vec \&dt) |
---|
38 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
39 | \hypertarget{classPF_140a073d5236684078b09021892d3b20}{ |
---|
40 | vec $\ast$ \hyperlink{classPF_140a073d5236684078b09021892d3b20}{\_\-\_\-w} ()} |
---|
41 | \label{classPF_140a073d5236684078b09021892d3b20} |
---|
42 | |
---|
43 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
44 | \hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ |
---|
45 | virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} |
---|
46 | \label{classBM_0186270f75189677f390fe088a9947e9} |
---|
47 | |
---|
48 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
49 | \hypertarget{classBM_8554809fec160bee279bcd5fa14ead5c}{ |
---|
50 | virtual const \hyperlink{classepdf}{epdf} \& \hyperlink{classBM_8554809fec160bee279bcd5fa14ead5c}{\_\-epdf} () const =0} |
---|
51 | \label{classBM_8554809fec160bee279bcd5fa14ead5c} |
---|
52 | |
---|
53 | \begin{CompactList}\small\item\em Returns a reference to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. \item\end{CompactList}\item |
---|
54 | \hypertarget{classBM_db500c4836f883c175a3cf3ab5a3ce24}{ |
---|
55 | virtual const \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classBM_db500c4836f883c175a3cf3ab5a3ce24}{\_\-e} () const =0} |
---|
56 | \label{classBM_db500c4836f883c175a3cf3ab5a3ce24} |
---|
57 | |
---|
58 | \begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item |
---|
59 | virtual double \hyperlink{classBM_8a8ce6df431689964c41cc6c849cfd06}{logpred} (const vec \&dt) const |
---|
60 | \item |
---|
61 | \hypertarget{classBM_cd0660f2a1a344b56ac39802708ff165}{ |
---|
62 | vec \hyperlink{classBM_cd0660f2a1a344b56ac39802708ff165}{logpred\_\-m} (const mat \&dt) const } |
---|
63 | \label{classBM_cd0660f2a1a344b56ac39802708ff165} |
---|
64 | |
---|
65 | \begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item |
---|
66 | \hypertarget{classBM_5594d68ee9aa6fc8c1e79019da5c9d56}{ |
---|
67 | virtual \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classBM_5594d68ee9aa6fc8c1e79019da5c9d56}{predictor} (const \hyperlink{classRV}{RV} \&\hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}) const } |
---|
68 | \label{classBM_5594d68ee9aa6fc8c1e79019da5c9d56} |
---|
69 | |
---|
70 | \begin{CompactList}\small\item\em Constructs a predictive density (marginal density on data). \item\end{CompactList}\item |
---|
71 | \hypertarget{classBM_126bd2595c48e311fc2a7ab72876092a}{ |
---|
72 | const \hyperlink{classRV}{RV} \& \hyperlink{classBM_126bd2595c48e311fc2a7ab72876092a}{\_\-rv} () const } |
---|
73 | \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
74 | |
---|
75 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
76 | \hypertarget{classBM_87f4a547d2c29180be88175e5eab9c88}{ |
---|
77 | double \hyperlink{classBM_87f4a547d2c29180be88175e5eab9c88}{\_\-ll} () const } |
---|
78 | \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
79 | |
---|
80 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
81 | \hypertarget{classBM_1ffa9f23669aabecc3760c06c6987522}{ |
---|
82 | void \hyperlink{classBM_1ffa9f23669aabecc3760c06c6987522}{set\_\-evalll} (bool evl0)} |
---|
83 | \label{classBM_1ffa9f23669aabecc3760c06c6987522} |
---|
84 | |
---|
85 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
86 | virtual \hyperlink{classBM}{BM} $\ast$ \hyperlink{classBM_eb58c81d6a7b75b05fc6f276eed78887}{\_\-copy\_\-} (bool changerv=false) |
---|
87 | \end{CompactItemize} |
---|
88 | \subsection*{Protected Attributes} |
---|
89 | \begin{CompactItemize} |
---|
90 | \item |
---|
91 | \hypertarget{classPF_2c2f44ed7a4eaa42e07bdb58d503f280}{ |
---|
92 | int \hyperlink{classPF_2c2f44ed7a4eaa42e07bdb58d503f280}{n}} |
---|
93 | \label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} |
---|
94 | |
---|
95 | \begin{CompactList}\small\item\em number of particles; \item\end{CompactList}\item |
---|
96 | \hypertarget{classPF_1a0a09e309da997f63ae8e30d1e9806b}{ |
---|
97 | \hyperlink{classeEmp}{eEmp} \hyperlink{classPF_1a0a09e309da997f63ae8e30d1e9806b}{est}} |
---|
98 | \label{classPF_1a0a09e309da997f63ae8e30d1e9806b} |
---|
99 | |
---|
100 | \begin{CompactList}\small\item\em posterior density \item\end{CompactList}\item |
---|
101 | \hypertarget{classPF_5c87aba508df321ff26536ced64dbb3a}{ |
---|
102 | vec \& \hyperlink{classPF_5c87aba508df321ff26536ced64dbb3a}{\_\-w}} |
---|
103 | \label{classPF_5c87aba508df321ff26536ced64dbb3a} |
---|
104 | |
---|
105 | \begin{CompactList}\small\item\em pointer into {\tt \hyperlink{classeEmp}{eEmp}} \item\end{CompactList}\item |
---|
106 | \hypertarget{classPF_cf7dad75e31215780a746c30e71ad9c5}{ |
---|
107 | Array$<$ vec $>$ \& \hyperlink{classPF_cf7dad75e31215780a746c30e71ad9c5}{\_\-samples}} |
---|
108 | \label{classPF_cf7dad75e31215780a746c30e71ad9c5} |
---|
109 | |
---|
110 | \begin{CompactList}\small\item\em pointer into {\tt \hyperlink{classeEmp}{eEmp}} \item\end{CompactList}\item |
---|
111 | \hypertarget{classPF_d92ac103f88f8c21e197e90af5695a09}{ |
---|
112 | \hyperlink{classmpdf}{mpdf} \& \hyperlink{classPF_d92ac103f88f8c21e197e90af5695a09}{par}} |
---|
113 | \label{classPF_d92ac103f88f8c21e197e90af5695a09} |
---|
114 | |
---|
115 | \begin{CompactList}\small\item\em Parameter evolution model. \item\end{CompactList}\item |
---|
116 | \hypertarget{classPF_dd0a687a4515333d6809147335854e77}{ |
---|
117 | \hyperlink{classmpdf}{mpdf} \& \hyperlink{classPF_dd0a687a4515333d6809147335854e77}{obs}} |
---|
118 | \label{classPF_dd0a687a4515333d6809147335854e77} |
---|
119 | |
---|
120 | \begin{CompactList}\small\item\em Observation model. \item\end{CompactList}\item |
---|
121 | \hypertarget{classBM_af00f0612fabe66241dd507188cdbf88}{ |
---|
122 | \hyperlink{classRV}{RV} \hyperlink{classBM_af00f0612fabe66241dd507188cdbf88}{rv}} |
---|
123 | \label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
124 | |
---|
125 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
126 | \hypertarget{classBM_5623fef6572a08c2b53b8c87b82dc979}{ |
---|
127 | double \hyperlink{classBM_5623fef6572a08c2b53b8c87b82dc979}{ll}} |
---|
128 | \label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
129 | |
---|
130 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
131 | \hypertarget{classBM_bf6fb59b30141074f8ee1e2f43d03129}{ |
---|
132 | bool \hyperlink{classBM_bf6fb59b30141074f8ee1e2f43d03129}{evalll}} |
---|
133 | \label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
134 | |
---|
135 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize} |
---|
136 | |
---|
137 | |
---|
138 | \subsection{Detailed Description} |
---|
139 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
140 | |
---|
141 | Posterior density is represented by a weighted empirical density ({\tt \hyperlink{classeEmp}{eEmp}} ). |
---|
142 | |
---|
143 | \subsection{Member Function Documentation} |
---|
144 | \hypertarget{classPF_64f636bbd63bea9efd778214e6b631d3}{ |
---|
145 | \index{PF@{PF}!bayes@{bayes}} |
---|
146 | \index{bayes@{bayes}!PF@{PF}} |
---|
147 | \subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
148 | \label{classPF_64f636bbd63bea9efd778214e6b631d3} |
---|
149 | |
---|
150 | |
---|
151 | Incremental Bayes rule. |
---|
152 | |
---|
153 | \begin{Desc} |
---|
154 | \item[Parameters:] |
---|
155 | \begin{description} |
---|
156 | \item[{\em dt}]vector of input data \end{description} |
---|
157 | \end{Desc} |
---|
158 | |
---|
159 | |
---|
160 | Implements \hyperlink{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}{BM}. |
---|
161 | |
---|
162 | Reimplemented in \hyperlink{classMPF_55daf8e4b6553dd9f47c692de7931623}{MPF$<$ BM\_\-T $>$}. |
---|
163 | |
---|
164 | References \_\-samples, \_\-w, est, mpdf::evallogcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ |
---|
165 | \index{PF@{PF}!logpred@{logpred}} |
---|
166 | \index{logpred@{logpred}!PF@{PF}} |
---|
167 | \subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}virtual double BM::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
168 | \label{classBM_8a8ce6df431689964c41cc6c849cfd06} |
---|
169 | |
---|
170 | |
---|
171 | Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out. |
---|
172 | |
---|
173 | Reimplemented in \hyperlink{classARX_e7f9e7823aec9bf7ddc3b42d9b3304c4}{ARX}, \hyperlink{classMixEF_424ca64f36d4e41de7a7e7ae921d35ea}{MixEF}, and \hyperlink{classmultiBM_13e26a61757278981fd8cac9a7ef91eb}{multiBM}. |
---|
174 | |
---|
175 | Referenced by BM::logpred\_\-m().\hypertarget{classBM_eb58c81d6a7b75b05fc6f276eed78887}{ |
---|
176 | \index{PF@{PF}!\_\-copy\_\-@{\_\-copy\_\-}} |
---|
177 | \index{\_\-copy\_\-@{\_\-copy\_\-}!PF@{PF}} |
---|
178 | \subsubsection[\_\-copy\_\-]{\setlength{\rightskip}{0pt plus 5cm}virtual {\bf BM}$\ast$ BM::\_\-copy\_\- (bool {\em changerv} = {\tt false})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
179 | \label{classBM_eb58c81d6a7b75b05fc6f276eed78887} |
---|
180 | |
---|
181 | |
---|
182 | Copy function required in vectors, Arrays of \hyperlink{classBM}{BM} etc. Have to be DELETED manually! Prototype: BM$\ast$ \hyperlink{classBM_eb58c81d6a7b75b05fc6f276eed78887}{\_\-copy\_\-()}\{\hyperlink{classBM}{BM} Tmp$\ast$=new Tmp(this$\ast$); return Tmp; \} |
---|
183 | |
---|
184 | Reimplemented in \hyperlink{classARX_5de61fbd4f97fa3216760b1f733f5af0}{ARX}, and \hyperlink{classBMEF_97f5312efe4a5bedb86d2daec59d8651}{BMEF}. |
---|
185 | |
---|
186 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
187 | \item |
---|
188 | work/git/mixpp/bdm/estim/\hyperlink{libPF_8h}{libPF.h}\item |
---|
189 | work/git/mixpp/bdm/estim/libPF.cpp\end{CompactItemize} |
---|