1 | \section{PF Class Reference} |
---|
2 | \label{classPF}\index{PF@{PF}} |
---|
3 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libPF.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for PF:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=62pt]{classPF__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for PF:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[width=92pt]{classPF__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | {\bf PF} (const {\bf RV} \&rv0, {\bf mpdf} \&par0, {\bf mpdf} \&obs0, int n0)\label{classPF_e99f0d866721405dd281e315ecb690aa} |
---|
26 | |
---|
27 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
28 | void {\bf set\_\-est} (const {\bf epdf} \&epdf0)\label{classPF_04d38fbcc0348b558212f530d9ec183e} |
---|
29 | |
---|
30 | \begin{CompactList}\small\item\em Set posterior density by sampling from epdf0. \item\end{CompactList}\item |
---|
31 | void {\bf bayes} (const vec \&dt) |
---|
32 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
33 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
34 | |
---|
35 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
36 | virtual {\bf epdf} \& {\bf \_\-epdf} ()=0\label{classBM_3dc45554556926bde996a267636abe55} |
---|
37 | |
---|
38 | \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item |
---|
39 | const {\bf RV} \& {\bf \_\-rv} () const \label{classBM_126bd2595c48e311fc2a7ab72876092a} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
42 | double {\bf \_\-ll} () const \label{classBM_87f4a547d2c29180be88175e5eab9c88} |
---|
43 | |
---|
44 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
45 | \subsection*{Protected Attributes} |
---|
46 | \begin{CompactItemize} |
---|
47 | \item |
---|
48 | int {\bf n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} |
---|
49 | |
---|
50 | \begin{CompactList}\small\item\em number of particles; \item\end{CompactList}\item |
---|
51 | {\bf eEmp} {\bf est}\label{classPF_1a0a09e309da997f63ae8e30d1e9806b} |
---|
52 | |
---|
53 | \begin{CompactList}\small\item\em posterior density \item\end{CompactList}\item |
---|
54 | vec \& {\bf \_\-w}\label{classPF_5c87aba508df321ff26536ced64dbb3a} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item |
---|
57 | Array$<$ vec $>$ \& {\bf \_\-samples}\label{classPF_cf7dad75e31215780a746c30e71ad9c5} |
---|
58 | |
---|
59 | \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item |
---|
60 | {\bf mpdf} \& {\bf par}\label{classPF_d92ac103f88f8c21e197e90af5695a09} |
---|
61 | |
---|
62 | \begin{CompactList}\small\item\em Parameter evolution model. \item\end{CompactList}\item |
---|
63 | {\bf mpdf} \& {\bf obs}\label{classPF_dd0a687a4515333d6809147335854e77} |
---|
64 | |
---|
65 | \begin{CompactList}\small\item\em Observation model. \item\end{CompactList}\item |
---|
66 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
67 | |
---|
68 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
69 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
70 | |
---|
71 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
72 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
73 | |
---|
74 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} |
---|
75 | |
---|
76 | |
---|
77 | \subsection{Detailed Description} |
---|
78 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
79 | |
---|
80 | Posterior density is represented by a weighted empirical density ({\tt \doxyref{eEmp}{p.}{classeEmp}} ). |
---|
81 | |
---|
82 | \subsection{Member Function Documentation} |
---|
83 | \index{PF@{PF}!bayes@{bayes}} |
---|
84 | \index{bayes@{bayes}!PF@{PF}} |
---|
85 | \subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [virtual]}}\label{classPF_64f636bbd63bea9efd778214e6b631d3} |
---|
86 | |
---|
87 | |
---|
88 | Incremental Bayes rule. |
---|
89 | |
---|
90 | \begin{Desc} |
---|
91 | \item[Parameters:] |
---|
92 | \begin{description} |
---|
93 | \item[{\em dt}]vector of input data \end{description} |
---|
94 | \end{Desc} |
---|
95 | |
---|
96 | |
---|
97 | Implements {\bf BM} \doxyref{}{p.}{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}. |
---|
98 | |
---|
99 | Reimplemented in {\bf MPF$<$ BM\_\-T $>$} \doxyref{}{p.}{classMPF_55daf8e4b6553dd9f47c692de7931623}. |
---|
100 | |
---|
101 | References \_\-samples, \_\-w, est, mpdf::evalcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond(). |
---|
102 | |
---|
103 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
104 | \item |
---|
105 | work/git/mixpp/bdm/estim/{\bf libPF.h}\item |
---|
106 | work/git/mixpp/bdm/estim/libPF.cpp\end{CompactItemize} |
---|