1 | \section{PF Class Reference} |
---|
2 | \label{classPF}\index{PF@{PF}} |
---|
3 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libPF.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for PF:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=65pt]{classPF__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for PF:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[width=96pt]{classPF__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | \textbf{PF} (const {\bf RV} \&rv0, {\bf mpdf} \&par0, {\bf mpdf} \&obs0, int {\bf n})\label{classPF_e9604b7fc87ff5e61da4de4a04210bfc} |
---|
26 | |
---|
27 | \item |
---|
28 | void \textbf{set\_\-est} (const {\bf epdf} $\ast$\&epdf0)\label{classPF_c5caa2c15604338b773d7a8125e7a1b5} |
---|
29 | |
---|
30 | \item |
---|
31 | void {\bf bayes} (const vec \&dt) |
---|
32 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
33 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
34 | |
---|
35 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
36 | virtual {\bf epdf} \& {\bf \_\-epdf} ()=0\label{classBM_3dc45554556926bde996a267636abe55} |
---|
37 | |
---|
38 | \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} |
---|
39 | \subsection*{Protected Attributes} |
---|
40 | \begin{CompactItemize} |
---|
41 | \item |
---|
42 | int {\bf n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} |
---|
43 | |
---|
44 | \begin{CompactList}\small\item\em number of particles; \item\end{CompactList}\item |
---|
45 | {\bf eEmp} {\bf ePdf}\label{classPF_a2ac56d1e3ffbb4ff0b3f02e6399deb0} |
---|
46 | |
---|
47 | \begin{CompactList}\small\item\em posterior density \item\end{CompactList}\item |
---|
48 | vec \& {\bf w}\label{classPF_a97d12da4d1832c0b0c6ec5877f921f0} |
---|
49 | |
---|
50 | \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item |
---|
51 | Array$<$ vec $>$ \& {\bf samples}\label{classPF_361743a0b5b89de1a29e91d1343b2565} |
---|
52 | |
---|
53 | \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item |
---|
54 | {\bf mpdf} \& {\bf par}\label{classPF_d92ac103f88f8c21e197e90af5695a09} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em Parameter evolution model. \item\end{CompactList}\item |
---|
57 | {\bf mpdf} \& {\bf obs}\label{classPF_dd0a687a4515333d6809147335854e77} |
---|
58 | |
---|
59 | \begin{CompactList}\small\item\em Observation model. \item\end{CompactList}\item |
---|
60 | {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} |
---|
61 | |
---|
62 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item |
---|
63 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
64 | |
---|
65 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
66 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
67 | |
---|
68 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} |
---|
69 | |
---|
70 | |
---|
71 | \subsection{Detailed Description} |
---|
72 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
73 | |
---|
74 | Posterior density is represented by a weighted empirical density ({\tt \doxyref{eEmp}{p.}{classeEmp}} ). |
---|
75 | |
---|
76 | \subsection{Member Function Documentation} |
---|
77 | \index{PF@{PF}!bayes@{bayes}} |
---|
78 | \index{bayes@{bayes}!PF@{PF}} |
---|
79 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [virtual]}}\label{classPF_64f636bbd63bea9efd778214e6b631d3} |
---|
80 | |
---|
81 | |
---|
82 | Incremental Bayes rule. |
---|
83 | |
---|
84 | \begin{Desc} |
---|
85 | \item[Parameters:] |
---|
86 | \begin{description} |
---|
87 | \item[{\em dt}]vector of input data \end{description} |
---|
88 | \end{Desc} |
---|
89 | |
---|
90 | |
---|
91 | Implements {\bf BM} \doxyref{}{p.}{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}. |
---|
92 | |
---|
93 | Reimplemented in {\bf MPF$<$ BM\_\-T $>$} \doxyref{}{p.}{classMPF_55daf8e4b6553dd9f47c692de7931623}. |
---|
94 | |
---|
95 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
96 | \item |
---|
97 | work/mixpp/bdm/estim/{\bf libPF.h}\item |
---|
98 | work/mixpp/bdm/estim/libPF.cpp\end{CompactItemize} |
---|