[8] | 1 | \section{TrivialPF Class Reference} |
---|
| 2 | \label{classTrivialPF}\index{TrivialPF@{TrivialPF}} |
---|
| 3 | Trivial particle filter with proposal density that is not conditioned on the data. |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | {\tt \#include $<$libPF.h$>$} |
---|
| 7 | |
---|
[19] | 8 | Inheritance diagram for TrivialPF:\nopagebreak |
---|
| 9 | \begin{figure}[H] |
---|
[8] | 10 | \begin{center} |
---|
| 11 | \leavevmode |
---|
[19] | 12 | \includegraphics[width=49pt]{classTrivialPF__inherit__graph} |
---|
[8] | 13 | \end{center} |
---|
| 14 | \end{figure} |
---|
[19] | 15 | Collaboration diagram for TrivialPF:\nopagebreak |
---|
| 16 | \begin{figure}[H] |
---|
| 17 | \begin{center} |
---|
| 18 | \leavevmode |
---|
[28] | 19 | \includegraphics[width=85pt]{classTrivialPF__coll__graph} |
---|
[19] | 20 | \end{center} |
---|
| 21 | \end{figure} |
---|
[8] | 22 | \subsection*{Public Member Functions} |
---|
| 23 | \begin{CompactItemize} |
---|
| 24 | \item |
---|
[28] | 25 | \textbf{TrivialPF} ({\bf mpdf} \&par, {\bf mpdf} \&obs, {\bf BM} \&prop, int n0)\label{classTrivialPF_c5a420747532e24b25cb0d835288795b} |
---|
[8] | 26 | |
---|
| 27 | \item |
---|
| 28 | \textbf{TrivialPF} ({\bf mpdf} \&par, {\bf mpdf} \&obs, int n0)\label{classTrivialPF_59fc4c55a2d5fbb6bc9a17a9dd9a2e13} |
---|
| 29 | |
---|
| 30 | \item |
---|
[28] | 31 | void \textbf{bayes} (const vec \&dt, bool {\bf evalll})\label{classTrivialPF_77a92bf054d763f806d27fc37a058389} |
---|
[8] | 32 | |
---|
[28] | 33 | \item |
---|
| 34 | ivec {\bf resample} (RESAMPLING\_\-METHOD method=SYSTEMATIC)\label{classPF_a0e26b2f6a5884aca49122f3e4f0cf19} |
---|
[8] | 35 | |
---|
[28] | 36 | \begin{CompactList}\small\item\em Returns indexes of particles that should be resampled. The ordering MUST guarantee inplace replacement. (Important for MPF.). \item\end{CompactList}\item |
---|
[32] | 37 | void {\bf bayes} (const vec \&dt) |
---|
[28] | 38 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
| 39 | void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} |
---|
| 40 | |
---|
| 41 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
[32] | 42 | {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classPF_53b7cc5a0709b0d40fb68408437c0aa2} |
---|
[28] | 43 | |
---|
| 44 | \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} |
---|
| 45 | \subsection*{Public Attributes} |
---|
| 46 | \begin{CompactItemize} |
---|
| 47 | \item |
---|
| 48 | double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} |
---|
| 49 | |
---|
| 50 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
| 51 | bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} |
---|
| 52 | |
---|
| 53 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} |
---|
| 54 | \subsection*{Protected Attributes} |
---|
| 55 | \begin{CompactItemize} |
---|
| 56 | \item |
---|
| 57 | int \textbf{n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} |
---|
| 58 | |
---|
| 59 | \item |
---|
| 60 | vec \textbf{w}\label{classPF_f6bc92f7979af4513b06b161497ba868} |
---|
| 61 | |
---|
| 62 | \item |
---|
| 63 | Uniform\_\-RNG \textbf{URNG}\label{classPF_3568ca7c3b3175d98b548f496b4c34dd} |
---|
| 64 | |
---|
| 65 | \end{CompactItemize} |
---|
| 66 | |
---|
| 67 | |
---|
[8] | 68 | \subsection{Detailed Description} |
---|
| 69 | Trivial particle filter with proposal density that is not conditioned on the data. |
---|
| 70 | |
---|
| 71 | \subsection{Member Function Documentation} |
---|
| 72 | \index{TrivialPF@{TrivialPF}!bayes@{bayes}} |
---|
| 73 | \index{bayes@{bayes}!TrivialPF@{TrivialPF}} |
---|
[32] | 74 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classPF_64f636bbd63bea9efd778214e6b631d3} |
---|
[8] | 75 | |
---|
| 76 | |
---|
| 77 | Incremental Bayes rule. |
---|
| 78 | |
---|
| 79 | \begin{Desc} |
---|
| 80 | \item[Parameters:] |
---|
| 81 | \begin{description} |
---|
[28] | 82 | \item[{\em dt}]vector of input data \end{description} |
---|
[8] | 83 | \end{Desc} |
---|
| 84 | |
---|
| 85 | |
---|
[32] | 86 | Implements {\bf BM} \doxyref{}{p.}{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}. |
---|
| 87 | |
---|
[8] | 88 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
| 89 | \item |
---|
[19] | 90 | work/mixpp/bdm/estim/{\bf libPF.h}\item |
---|
| 91 | work/mixpp/bdm/estim/libPF.cpp\end{CompactItemize} |
---|