root/doc/latex/classbdm_1_1ARX.tex @ 270

Revision 270, 13.3 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

Line 
1\hypertarget{classbdm_1_1ARX}{
2\section{bdm::ARX Class Reference}
3\label{classbdm_1_1ARX}\index{bdm::ARX@{bdm::ARX}}
4}
5{\tt \#include $<$arx.h$>$}
6
7Inheritance diagram for bdm::ARX:\nopagebreak
8\begin{figure}[H]
9\begin{center}
10\leavevmode
11\includegraphics[width=64pt]{classbdm_1_1ARX__inherit__graph}
12\end{center}
13\end{figure}
14
15
16\subsection{Detailed Description}
17Linear Autoregressive model with Gaussian noise.
18
19Regression of the following kind: \[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] where unknown parameters {\tt rv} are $[\theta r]$, regression vector $\psi=\psi(y_{1:t},u_{1:t})$ is a known function of past outputs and exogeneous variables $u_t$. Distrubances $e_t$ are supposed to be normally distributed: \[ e_t \sim \mathcal{N}(0,1). \]
20
21Extension for time-variant parameters $\theta_t,r_t$ may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor {\tt frg} $\in <0,1>$ should be given in the constructor. Time-invariant parameters are estimated for {\tt frg} = 1. \subsection*{Public Member Functions}
22\begin{CompactItemize}
23\item 
24\hypertarget{classbdm_1_1ARX_43ed6114f04a3a8756fe2b42eaa35f98}{
25\hyperlink{classbdm_1_1ARX_43ed6114f04a3a8756fe2b42eaa35f98}{ARX} (const double frg0=1.0)}
26\label{classbdm_1_1ARX_43ed6114f04a3a8756fe2b42eaa35f98}
27
28\begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 
29\hypertarget{classbdm_1_1ARX_73a55a3d66bfbeeee4df6c2ae40920ed}{
30\hyperlink{classbdm_1_1ARX_73a55a3d66bfbeeee4df6c2ae40920ed}{ARX} (const \hyperlink{classbdm_1_1ARX}{ARX} \&A0)}
31\label{classbdm_1_1ARX_73a55a3d66bfbeeee4df6c2ae40920ed}
32
33\begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item 
34\hypertarget{classbdm_1_1ARX_60c40b5c6abc4c7e464b4ccae64a5a61}{
35\hyperlink{classbdm_1_1ARX}{ARX} $\ast$ \hyperlink{classbdm_1_1ARX_60c40b5c6abc4c7e464b4ccae64a5a61}{\_\-copy\_\-} ()}
36\label{classbdm_1_1ARX_60c40b5c6abc4c7e464b4ccae64a5a61}
37
38\begin{CompactList}\small\item\em Auxiliary function. \item\end{CompactList}\item 
39\hypertarget{classbdm_1_1ARX_cab0a1de5355b1027d24fd3d4862c9b0}{
40void \hyperlink{classbdm_1_1ARX_cab0a1de5355b1027d24fd3d4862c9b0}{set\_\-parameters} (const \hyperlink{classldmat}{ldmat} \&V0, const double \&nu0)}
41\label{classbdm_1_1ARX_cab0a1de5355b1027d24fd3d4862c9b0}
42
43\begin{CompactList}\small\item\em Set sufficient statistics. \item\end{CompactList}\item 
44\hypertarget{classbdm_1_1ARX_539f9d0127423c94b912708d390e67b8}{
45void \hyperlink{classbdm_1_1ARX_539f9d0127423c94b912708d390e67b8}{set\_\-statistics} (const \hyperlink{classbdm_1_1BMEF}{BMEF} $\ast$BM0)}
46\label{classbdm_1_1ARX_539f9d0127423c94b912708d390e67b8}
47
48\begin{CompactList}\small\item\em get statistics from another model \item\end{CompactList}\item 
49\hypertarget{classbdm_1_1ARX_1974409e022ea1efb3404b5c2fde66ad}{
50void \hyperlink{classbdm_1_1ARX_1974409e022ea1efb3404b5c2fde66ad}{get\_\-parameters} (mat \&V0, double \&nu0)}
51\label{classbdm_1_1ARX_1974409e022ea1efb3404b5c2fde66ad}
52
53\begin{CompactList}\small\item\em Returns sufficient statistics. \item\end{CompactList}\item 
54\hypertarget{classbdm_1_1ARX_17e7fe14654ab3c449846c3f43e66169}{
55void \hyperlink{classbdm_1_1ARX_17e7fe14654ab3c449846c3f43e66169}{bayes} (const vec \&dt, const double w)}
56\label{classbdm_1_1ARX_17e7fe14654ab3c449846c3f43e66169}
57
58\begin{CompactList}\small\item\em Here $dt = [y_t psi_t] $. \item\end{CompactList}\item 
59void \hyperlink{classbdm_1_1ARX_8bdf2974052e8ce74eb0d4f3791c58a3}{bayes} (const vec \&dt)
60\begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 
61\hypertarget{classbdm_1_1ARX_16797df43f85f1ddbe9d64fd6d82c25d}{
62const \hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} () const }
63\label{classbdm_1_1ARX_16797df43f85f1ddbe9d64fd6d82c25d}
64
65\item 
66double \hyperlink{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}{logpred} (const vec \&dt) const
67\item 
68\hypertarget{classbdm_1_1ARX_e86ab499b116b837d3163ec852961eca}{
69void \hyperlink{classbdm_1_1ARX_e86ab499b116b837d3163ec852961eca}{flatten} (const \hyperlink{classbdm_1_1BMEF}{BMEF} $\ast$B)}
70\label{classbdm_1_1ARX_e86ab499b116b837d3163ec852961eca}
71
72\begin{CompactList}\small\item\em Flatten the posterior according to the given \hyperlink{classbdm_1_1BMEF}{BMEF} (of the same type!). \item\end{CompactList}\item 
73\hypertarget{classbdm_1_1ARX_749827323c034f11bec61b6e2fc3d42a}{
74\hyperlink{classbdm_1_1enorm}{enorm}$<$ \hyperlink{classldmat}{ldmat} $>$ $\ast$ \hyperlink{classbdm_1_1ARX_749827323c034f11bec61b6e2fc3d42a}{epredictor} (const vec \&rgr) const }
75\label{classbdm_1_1ARX_749827323c034f11bec61b6e2fc3d42a}
76
77\begin{CompactList}\small\item\em Conditioned version of the predictor. \item\end{CompactList}\item 
78\hypertarget{classbdm_1_1ARX_4cdf5e2a7d3480ec31f6247ed4289b15}{
79\hyperlink{classbdm_1_1enorm}{enorm}$<$ \hyperlink{classldmat}{ldmat} $>$ $\ast$ \hyperlink{classbdm_1_1ARX_4cdf5e2a7d3480ec31f6247ed4289b15}{epredictor} () const }
80\label{classbdm_1_1ARX_4cdf5e2a7d3480ec31f6247ed4289b15}
81
82\begin{CompactList}\small\item\em Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $. \item\end{CompactList}\item 
83\hyperlink{classbdm_1_1mlnorm}{mlnorm}$<$ \hyperlink{classldmat}{ldmat} $>$ $\ast$ \hyperlink{classbdm_1_1ARX_74fe8ae2d88bee8639510fd0eaf73513}{predictor} () const
84\begin{CompactList}\small\item\em conditional version of the predictor \item\end{CompactList}\item 
85\hypertarget{classbdm_1_1ARX_c6a2428a46407fe45b4c7a99069c0801}{
86\hyperlink{classbdm_1_1mlstudent}{mlstudent} $\ast$ \textbf{predictor\_\-student} () const }
87\label{classbdm_1_1ARX_c6a2428a46407fe45b4c7a99069c0801}
88
89\item 
90ivec \hyperlink{classbdm_1_1ARX_16b02ae03316751664c22d59d90c1e34}{structure\_\-est} (\hyperlink{classbdm_1_1egiw}{egiw} Eg0)
91\begin{CompactList}\small\item\em Brute force structure estimation. \item\end{CompactList}\item 
92\hypertarget{classbdm_1_1ARX_ab2c55205a324e9d698fbd8ac229ad4f}{
93const \hyperlink{classbdm_1_1egiw}{egiw} $\ast$ \textbf{\_\-e} () const }
94\label{classbdm_1_1ARX_ab2c55205a324e9d698fbd8ac229ad4f}
95
96\item 
97\hypertarget{classbdm_1_1BMEF_5912dbcf28ae711e30b08c2fa766a3e6}{
98\hyperlink{classbdm_1_1BMEF}{BMEF} $\ast$ \hyperlink{classbdm_1_1BMEF_5912dbcf28ae711e30b08c2fa766a3e6}{\_\-copy\_\-} (bool changerv=false)}
99\label{classbdm_1_1BMEF_5912dbcf28ae711e30b08c2fa766a3e6}
100
101\begin{CompactList}\small\item\em Flatten the posterior as if to keep nu0 data. \item\end{CompactList}\end{CompactItemize}
102\begin{Indent}{\bf Mathematical operations}\par
103\begin{CompactItemize}
104\item 
105\hypertarget{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{
106virtual void \hyperlink{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{bayesB} (const mat \&Dt)}
107\label{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}
108
109\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
110\hypertarget{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{
111vec \hyperlink{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{logpred\_\-m} (const mat \&dt) const }
112\label{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}
113
114\begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\end{CompactItemize}
115\end{Indent}
116\begin{Indent}{\bf Access to attributes}\par
117\begin{CompactItemize}
118\item 
119\hypertarget{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c}{
120const \hyperlink{classbdm_1_1RV}{RV} \& \textbf{\_\-drv} () const }
121\label{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c}
122
123\item 
124\hypertarget{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96}{
125void \textbf{set\_\-drv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv)}
126\label{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96}
127
128\item 
129\hypertarget{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}{
130double \textbf{\_\-ll} () const }
131\label{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}
132
133\item 
134\hypertarget{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}{
135void \textbf{set\_\-evalll} (bool evl0)}
136\label{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}
137
138\end{CompactItemize}
139\end{Indent}
140\subsection*{Protected Attributes}
141\begin{CompactItemize}
142\item 
143\hypertarget{classbdm_1_1ARX_11474a627367f81b76830cb8477cf026}{
144\hyperlink{classbdm_1_1egiw}{egiw} \hyperlink{classbdm_1_1ARX_11474a627367f81b76830cb8477cf026}{est}}
145\label{classbdm_1_1ARX_11474a627367f81b76830cb8477cf026}
146
147\begin{CompactList}\small\item\em Posterior estimate of $\theta,r$ in the form of Normal-inverse Wishart density. \item\end{CompactList}\item 
148\hypertarget{classbdm_1_1ARX_de5b7d83ff5d3f5af2f80068db0abdfd}{
149\hyperlink{classldmat}{ldmat} \& \hyperlink{classbdm_1_1ARX_de5b7d83ff5d3f5af2f80068db0abdfd}{V}}
150\label{classbdm_1_1ARX_de5b7d83ff5d3f5af2f80068db0abdfd}
151
152\begin{CompactList}\small\item\em cached value of est.V \item\end{CompactList}\item 
153\hypertarget{classbdm_1_1ARX_740b0582f180ba13cae91d66e9bdb67f}{
154double \& \hyperlink{classbdm_1_1ARX_740b0582f180ba13cae91d66e9bdb67f}{nu}}
155\label{classbdm_1_1ARX_740b0582f180ba13cae91d66e9bdb67f}
156
157\begin{CompactList}\small\item\em cached value of est.nu \item\end{CompactList}\item 
158\hypertarget{classbdm_1_1BMEF_1331865e10fb1ccef65bb4c47fa3be64}{
159double \hyperlink{classbdm_1_1BMEF_1331865e10fb1ccef65bb4c47fa3be64}{frg}}
160\label{classbdm_1_1BMEF_1331865e10fb1ccef65bb4c47fa3be64}
161
162\begin{CompactList}\small\item\em forgetting factor \item\end{CompactList}\item 
163\hypertarget{classbdm_1_1BMEF_06e7b3ac03e10017d4288c76888e2865}{
164double \hyperlink{classbdm_1_1BMEF_06e7b3ac03e10017d4288c76888e2865}{last\_\-lognc}}
165\label{classbdm_1_1BMEF_06e7b3ac03e10017d4288c76888e2865}
166
167\begin{CompactList}\small\item\em cached value of lognc() in the previous step (used in evaluation of {\tt ll} ) \item\end{CompactList}\item 
168\hypertarget{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{
169\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{drv}}
170\label{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}
171
172\begin{CompactList}\small\item\em Random variable of the data (optional). \item\end{CompactList}\item 
173\hypertarget{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{
174double \hyperlink{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ll}}
175\label{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}
176
177\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
178\hypertarget{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{
179bool \hyperlink{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{evalll}}
180\label{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}
181
182\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize}
183
184
185\subsection{Member Function Documentation}
186\hypertarget{classbdm_1_1ARX_8bdf2974052e8ce74eb0d4f3791c58a3}{
187\index{bdm::ARX@{bdm::ARX}!bayes@{bayes}}
188\index{bayes@{bayes}!bdm::ARX@{bdm::ARX}}
189\subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void bdm::ARX::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
190\label{classbdm_1_1ARX_8bdf2974052e8ce74eb0d4f3791c58a3}
191
192
193Incremental Bayes rule.
194
195\begin{Desc}
196\item[Parameters:]
197\begin{description}
198\item[{\em dt}]vector of input data \end{description}
199\end{Desc}
200
201
202Reimplemented from \hyperlink{classbdm_1_1BMEF_c287f4c0c1ea31b91572ec45351838f1}{bdm::BMEF}.
203
204References bayes().\hypertarget{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}{
205\index{bdm::ARX@{bdm::ARX}!logpred@{logpred}}
206\index{logpred@{logpred}!bdm::ARX@{bdm::ARX}}
207\subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}double bdm::ARX::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
208\label{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}
209
210
211Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
212
213Reimplemented from \hyperlink{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{bdm::BM}.
214
215References bdm::egiw::\_\-nu(), bdm::egiw::\_\-V(), est, bdm::BM::evalll, bdm::BMEF::frg, bdm::BMEF::last\_\-lognc, bdm::egiw::lognc(), nu, ldmat::opupdt(), bdm::egiw::pow(), and V.\hypertarget{classbdm_1_1ARX_74fe8ae2d88bee8639510fd0eaf73513}{
216\index{bdm::ARX@{bdm::ARX}!predictor@{predictor}}
217\index{predictor@{predictor}!bdm::ARX@{bdm::ARX}}
218\subsubsection[predictor]{\setlength{\rightskip}{0pt plus 5cm}{\bf mlnorm}$<$ {\bf ldmat} $>$ $\ast$ bdm::ARX::predictor () const\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
219\label{classbdm_1_1ARX_74fe8ae2d88bee8639510fd0eaf73513}
220
221
222conditional version of the predictor
223
224
225
226$<$----------- TODO
227
228Reimplemented from \hyperlink{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}{bdm::BM}.
229
230References bdm::epdf::dimension(), est, bdm::egiw::mean\_\-mat(), ldmat::rows(), bdm::mlnorm$<$ sq\_\-T $>$::set\_\-parameters(), and V.\hypertarget{classbdm_1_1ARX_16b02ae03316751664c22d59d90c1e34}{
231\index{bdm::ARX@{bdm::ARX}!structure\_\-est@{structure\_\-est}}
232\index{structure\_\-est@{structure\_\-est}!bdm::ARX@{bdm::ARX}}
233\subsubsection[structure\_\-est]{\setlength{\rightskip}{0pt plus 5cm}ivec bdm::ARX::structure\_\-est ({\bf egiw} {\em Eg0})}}
234\label{classbdm_1_1ARX_16b02ae03316751664c22d59d90c1e34}
235
236
237Brute force structure estimation.
238
239\begin{Desc}
240\item[Returns:]indeces of accepted regressors. \end{Desc}
241
242
243References bdm::epdf::dimension(), bdm::egiw\_\-bestbelow(), est, and bdm::egiw::lognc().
244
245The documentation for this class was generated from the following files:\begin{CompactItemize}
246\item 
247\hyperlink{arx_8h}{arx.h}\item 
248bdm/estim/arx.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.