| 1 | \hypertarget{classbdm_1_1EKFfull}{ | 
|---|
| 2 | \section{bdm::EKFfull Class Reference} | 
|---|
| 3 | \label{classbdm_1_1EKFfull}\index{bdm::EKFfull@{bdm::EKFfull}} | 
|---|
| 4 | } | 
|---|
| 5 | Extended \hyperlink{classbdm_1_1Kalman}{Kalman} Filter in full matrices.   | 
|---|
| 6 |  | 
|---|
| 7 |  | 
|---|
| 8 | {\tt \#include $<$libKF.h$>$} | 
|---|
| 9 |  | 
|---|
| 10 | Inheritance diagram for bdm::EKFfull:\nopagebreak | 
|---|
| 11 | \begin{figure}[H] | 
|---|
| 12 | \begin{center} | 
|---|
| 13 | \leavevmode | 
|---|
| 14 | \includegraphics[width=113pt]{classbdm_1_1EKFfull__inherit__graph} | 
|---|
| 15 | \end{center} | 
|---|
| 16 | \end{figure} | 
|---|
| 17 | Collaboration diagram for bdm::EKFfull:\nopagebreak | 
|---|
| 18 | \begin{figure}[H] | 
|---|
| 19 | \begin{center} | 
|---|
| 20 | \leavevmode | 
|---|
| 21 | \includegraphics[width=400pt]{classbdm_1_1EKFfull__coll__graph} | 
|---|
| 22 | \end{center} | 
|---|
| 23 | \end{figure} | 
|---|
| 24 | \subsection*{Public Member Functions} | 
|---|
| 25 | \begin{CompactItemize} | 
|---|
| 26 | \item  | 
|---|
| 27 | \hypertarget{classbdm_1_1EKFfull_38c0465c9edac6cedfe611373b0cce01}{ | 
|---|
| 28 | \hyperlink{classbdm_1_1EKFfull_38c0465c9edac6cedfe611373b0cce01}{EKFfull} (\hyperlink{classbdm_1_1RV}{RV} rvx, \hyperlink{classbdm_1_1RV}{RV} rvy, \hyperlink{classbdm_1_1RV}{RV} rvu)} | 
|---|
| 29 | \label{classbdm_1_1EKFfull_38c0465c9edac6cedfe611373b0cce01} | 
|---|
| 30 |  | 
|---|
| 31 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item  | 
|---|
| 32 | \hypertarget{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743}{ | 
|---|
| 33 | void \hyperlink{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743}{set\_\-parameters} (\hyperlink{classbdm_1_1diffbifn}{diffbifn} $\ast$pfxu, \hyperlink{classbdm_1_1diffbifn}{diffbifn} $\ast$phxu, const mat Q0, const mat R0)} | 
|---|
| 34 | \label{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743} | 
|---|
| 35 |  | 
|---|
| 36 | \begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item  | 
|---|
| 37 | \hypertarget{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699}{ | 
|---|
| 38 | void \hyperlink{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699}{bayes} (const vec \&dt)} | 
|---|
| 39 | \label{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699} | 
|---|
| 40 |  | 
|---|
| 41 | \begin{CompactList}\small\item\em Here dt = \mbox{[}yt;ut\mbox{]} of appropriate dimensions. \item\end{CompactList}\item  | 
|---|
| 42 | \hypertarget{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2}{ | 
|---|
| 43 | void \hyperlink{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2}{set\_\-est} (vec mu0, mat P0)} | 
|---|
| 44 | \label{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2} | 
|---|
| 45 |  | 
|---|
| 46 | \begin{CompactList}\small\item\em set estimates \item\end{CompactList}\item  | 
|---|
| 47 | \hypertarget{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a}{ | 
|---|
| 48 | const \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a}{\_\-epdf} () const } | 
|---|
| 49 | \label{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a} | 
|---|
| 50 |  | 
|---|
| 51 | \begin{CompactList}\small\item\em dummy! \item\end{CompactList}\item  | 
|---|
| 52 | \hypertarget{classbdm_1_1EKFfull_3d0e427d4d2fb7ac20358ce629f5d510}{ | 
|---|
| 53 | const \hyperlink{classbdm_1_1enorm}{enorm}$<$ \hyperlink{classfsqmat}{fsqmat} $>$ $\ast$ \hyperlink{classbdm_1_1EKFfull_3d0e427d4d2fb7ac20358ce629f5d510}{\_\-e} () const } | 
|---|
| 54 | \label{classbdm_1_1EKFfull_3d0e427d4d2fb7ac20358ce629f5d510} | 
|---|
| 55 |  | 
|---|
| 56 | \begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classbdm_1_1epdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item  | 
|---|
| 57 | \hypertarget{classbdm_1_1EKFfull_d4f57cb8af64b06c530f528c32596d4d}{ | 
|---|
| 58 | const mat \textbf{\_\-R} ()} | 
|---|
| 59 | \label{classbdm_1_1EKFfull_d4f57cb8af64b06c530f528c32596d4d} | 
|---|
| 60 |  | 
|---|
| 61 | \item  | 
|---|
| 62 | \hypertarget{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{ | 
|---|
| 63 | virtual void \hyperlink{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{bayesB} (const mat \&Dt)} | 
|---|
| 64 | \label{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc} | 
|---|
| 65 |  | 
|---|
| 66 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item  | 
|---|
| 67 | virtual double \hyperlink{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{logpred} (const vec \&dt) const  | 
|---|
| 68 | \item  | 
|---|
| 69 | \hypertarget{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{ | 
|---|
| 70 | vec \hyperlink{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{logpred\_\-m} (const mat \&dt) const } | 
|---|
| 71 | \label{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae} | 
|---|
| 72 |  | 
|---|
| 73 | \begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item  | 
|---|
| 74 | \hypertarget{classbdm_1_1BM_710e7d69c0d8791fb41a7cd4683cca2c}{ | 
|---|
| 75 | virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1BM_710e7d69c0d8791fb41a7cd4683cca2c}{predictor} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1BM_18d6db4af8ee42077741d9e3618153ca}{rv}) const } | 
|---|
| 76 | \label{classbdm_1_1BM_710e7d69c0d8791fb41a7cd4683cca2c} | 
|---|
| 77 |  | 
|---|
| 78 | \begin{CompactList}\small\item\em Constructs a predictive density (marginal density on data). \item\end{CompactList}\item  | 
|---|
| 79 | \hypertarget{classbdm_1_1BM_40a3c891996391e3135518053a917793}{ | 
|---|
| 80 | const \hyperlink{classbdm_1_1RV}{RV} \& \hyperlink{classbdm_1_1BM_40a3c891996391e3135518053a917793}{\_\-rv} () const } | 
|---|
| 81 | \label{classbdm_1_1BM_40a3c891996391e3135518053a917793} | 
|---|
| 82 |  | 
|---|
| 83 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item  | 
|---|
| 84 | \hypertarget{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}{ | 
|---|
| 85 | double \hyperlink{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}{\_\-ll} () const } | 
|---|
| 86 | \label{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70} | 
|---|
| 87 |  | 
|---|
| 88 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item  | 
|---|
| 89 | \hypertarget{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}{ | 
|---|
| 90 | void \hyperlink{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}{set\_\-evalll} (bool evl0)} | 
|---|
| 91 | \label{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f} | 
|---|
| 92 |  | 
|---|
| 93 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item  | 
|---|
| 94 | virtual \hyperlink{classbdm_1_1BM}{BM} $\ast$ \hyperlink{classbdm_1_1BM_3efb3098172f1f67564a312fe732473e}{\_\-copy\_\-} (bool changerv=false) | 
|---|
| 95 | \end{CompactItemize} | 
|---|
| 96 | \subsection*{Public Attributes} | 
|---|
| 97 | \begin{CompactItemize} | 
|---|
| 98 | \item  | 
|---|
| 99 | \hypertarget{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666}{ | 
|---|
| 100 | vec \hyperlink{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666}{mu}} | 
|---|
| 101 | \label{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666} | 
|---|
| 102 |  | 
|---|
| 103 | \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item  | 
|---|
| 104 | \hypertarget{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c}{ | 
|---|
| 105 | mat \hyperlink{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c}{P}} | 
|---|
| 106 | \label{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c} | 
|---|
| 107 |  | 
|---|
| 108 | \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\item  | 
|---|
| 109 | \hypertarget{classbdm_1_1KalmanFull_0dba34bfba2aedd8c488692bcd14869b}{ | 
|---|
| 110 | bool \textbf{evalll}} | 
|---|
| 111 | \label{classbdm_1_1KalmanFull_0dba34bfba2aedd8c488692bcd14869b} | 
|---|
| 112 |  | 
|---|
| 113 | \item  | 
|---|
| 114 | \hypertarget{classbdm_1_1KalmanFull_363ade67bd5a06c6a45c41e4d8afe11e}{ | 
|---|
| 115 | double \textbf{ll}} | 
|---|
| 116 | \label{classbdm_1_1KalmanFull_363ade67bd5a06c6a45c41e4d8afe11e} | 
|---|
| 117 |  | 
|---|
| 118 | \end{CompactItemize} | 
|---|
| 119 | \subsection*{Protected Attributes} | 
|---|
| 120 | \begin{CompactItemize} | 
|---|
| 121 | \item  | 
|---|
| 122 | \hypertarget{classbdm_1_1KalmanFull_427886a66cde0354e041ddef5aa60eab}{ | 
|---|
| 123 | int \textbf{dimx}} | 
|---|
| 124 | \label{classbdm_1_1KalmanFull_427886a66cde0354e041ddef5aa60eab} | 
|---|
| 125 |  | 
|---|
| 126 | \item  | 
|---|
| 127 | \hypertarget{classbdm_1_1KalmanFull_2b0399b8904ccb81c2098cc3cc85ff8f}{ | 
|---|
| 128 | int \textbf{dimy}} | 
|---|
| 129 | \label{classbdm_1_1KalmanFull_2b0399b8904ccb81c2098cc3cc85ff8f} | 
|---|
| 130 |  | 
|---|
| 131 | \item  | 
|---|
| 132 | \hypertarget{classbdm_1_1KalmanFull_8e886b5d535ba7f9a39e66be34116788}{ | 
|---|
| 133 | int \textbf{dimu}} | 
|---|
| 134 | \label{classbdm_1_1KalmanFull_8e886b5d535ba7f9a39e66be34116788} | 
|---|
| 135 |  | 
|---|
| 136 | \item  | 
|---|
| 137 | \hypertarget{classbdm_1_1KalmanFull_a24914cfc0297b9f3885df86e5011733}{ | 
|---|
| 138 | mat \textbf{A}} | 
|---|
| 139 | \label{classbdm_1_1KalmanFull_a24914cfc0297b9f3885df86e5011733} | 
|---|
| 140 |  | 
|---|
| 141 | \item  | 
|---|
| 142 | \hypertarget{classbdm_1_1KalmanFull_ef28133db32cc60b710925266c37376d}{ | 
|---|
| 143 | mat \textbf{B}} | 
|---|
| 144 | \label{classbdm_1_1KalmanFull_ef28133db32cc60b710925266c37376d} | 
|---|
| 145 |  | 
|---|
| 146 | \item  | 
|---|
| 147 | \hypertarget{classbdm_1_1KalmanFull_89ed156e063e19b32df2218bfaef42cf}{ | 
|---|
| 148 | mat \textbf{C}} | 
|---|
| 149 | \label{classbdm_1_1KalmanFull_89ed156e063e19b32df2218bfaef42cf} | 
|---|
| 150 |  | 
|---|
| 151 | \item  | 
|---|
| 152 | \hypertarget{classbdm_1_1KalmanFull_74e9f43b5b4d4a5e012e6178542d3e8f}{ | 
|---|
| 153 | mat \textbf{D}} | 
|---|
| 154 | \label{classbdm_1_1KalmanFull_74e9f43b5b4d4a5e012e6178542d3e8f} | 
|---|
| 155 |  | 
|---|
| 156 | \item  | 
|---|
| 157 | \hypertarget{classbdm_1_1KalmanFull_5c1fc8685511d21ba0e1688452105b7c}{ | 
|---|
| 158 | mat \textbf{R}} | 
|---|
| 159 | \label{classbdm_1_1KalmanFull_5c1fc8685511d21ba0e1688452105b7c} | 
|---|
| 160 |  | 
|---|
| 161 | \item  | 
|---|
| 162 | \hypertarget{classbdm_1_1KalmanFull_17d9a3316ecf81c149c2c1affb11af58}{ | 
|---|
| 163 | mat \textbf{Q}} | 
|---|
| 164 | \label{classbdm_1_1KalmanFull_17d9a3316ecf81c149c2c1affb11af58} | 
|---|
| 165 |  | 
|---|
| 166 | \item  | 
|---|
| 167 | \hypertarget{classbdm_1_1KalmanFull_f7fc60eca2893328d42f92246526d4b9}{ | 
|---|
| 168 | mat \textbf{\_\-Pp}} | 
|---|
| 169 | \label{classbdm_1_1KalmanFull_f7fc60eca2893328d42f92246526d4b9} | 
|---|
| 170 |  | 
|---|
| 171 | \item  | 
|---|
| 172 | \hypertarget{classbdm_1_1KalmanFull_b85742b33f95077f360a03ca2de05261}{ | 
|---|
| 173 | mat \textbf{\_\-Ry}} | 
|---|
| 174 | \label{classbdm_1_1KalmanFull_b85742b33f95077f360a03ca2de05261} | 
|---|
| 175 |  | 
|---|
| 176 | \item  | 
|---|
| 177 | \hypertarget{classbdm_1_1KalmanFull_09472aa8c06e79944d7637b70bf4e401}{ | 
|---|
| 178 | mat \textbf{\_\-iRy}} | 
|---|
| 179 | \label{classbdm_1_1KalmanFull_09472aa8c06e79944d7637b70bf4e401} | 
|---|
| 180 |  | 
|---|
| 181 | \item  | 
|---|
| 182 | \hypertarget{classbdm_1_1KalmanFull_7455b5deee5f14d978c82c5cc9357e29}{ | 
|---|
| 183 | mat \textbf{\_\-K}} | 
|---|
| 184 | \label{classbdm_1_1KalmanFull_7455b5deee5f14d978c82c5cc9357e29} | 
|---|
| 185 |  | 
|---|
| 186 | \item  | 
|---|
| 187 | \hypertarget{classbdm_1_1BM_18d6db4af8ee42077741d9e3618153ca}{ | 
|---|
| 188 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1BM_18d6db4af8ee42077741d9e3618153ca}{rv}} | 
|---|
| 189 | \label{classbdm_1_1BM_18d6db4af8ee42077741d9e3618153ca} | 
|---|
| 190 |  | 
|---|
| 191 | \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item  | 
|---|
| 192 | \hypertarget{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ | 
|---|
| 193 | double \hyperlink{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ll}} | 
|---|
| 194 | \label{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a} | 
|---|
| 195 |  | 
|---|
| 196 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item  | 
|---|
| 197 | \hypertarget{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{ | 
|---|
| 198 | bool \hyperlink{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{evalll}} | 
|---|
| 199 | \label{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee} | 
|---|
| 200 |  | 
|---|
| 201 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize} | 
|---|
| 202 | \subsection*{Friends} | 
|---|
| 203 | \begin{CompactItemize} | 
|---|
| 204 | \item  | 
|---|
| 205 | \hypertarget{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af}{ | 
|---|
| 206 | std::ostream \& \hyperlink{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classbdm_1_1KalmanFull}{KalmanFull} \&kf)} | 
|---|
| 207 | \label{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af} | 
|---|
| 208 |  | 
|---|
| 209 | \begin{CompactList}\small\item\em print elements of KF \item\end{CompactList}\end{CompactItemize} | 
|---|
| 210 |  | 
|---|
| 211 |  | 
|---|
| 212 | \subsection{Detailed Description} | 
|---|
| 213 | Extended \hyperlink{classbdm_1_1Kalman}{Kalman} Filter in full matrices.  | 
|---|
| 214 |  | 
|---|
| 215 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.  | 
|---|
| 216 |  | 
|---|
| 217 | \subsection{Member Function Documentation} | 
|---|
| 218 | \hypertarget{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{ | 
|---|
| 219 | \index{bdm::EKFfull@{bdm::EKFfull}!logpred@{logpred}} | 
|---|
| 220 | \index{logpred@{logpred}!bdm::EKFfull@{bdm::EKFfull}} | 
|---|
| 221 | \subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}virtual double bdm::BM::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} | 
|---|
| 222 | \label{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0} | 
|---|
| 223 |  | 
|---|
| 224 |  | 
|---|
| 225 | Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.  | 
|---|
| 226 |  | 
|---|
| 227 | Reimplemented in \hyperlink{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}{bdm::ARX}, \hyperlink{classbdm_1_1MixEF_da724da464a75e07521941e430929efa}{bdm::MixEF}, and \hyperlink{classbdm_1_1multiBM_e157b607c1e3fa91d42aeea44458e2bf}{bdm::multiBM}. | 
|---|
| 228 |  | 
|---|
| 229 | Referenced by bdm::BM::logpred\_\-m().\hypertarget{classbdm_1_1BM_3efb3098172f1f67564a312fe732473e}{ | 
|---|
| 230 | \index{bdm::EKFfull@{bdm::EKFfull}!\_\-copy\_\-@{\_\-copy\_\-}} | 
|---|
| 231 | \index{\_\-copy\_\-@{\_\-copy\_\-}!bdm::EKFfull@{bdm::EKFfull}} | 
|---|
| 232 | \subsubsection[\_\-copy\_\-]{\setlength{\rightskip}{0pt plus 5cm}virtual {\bf BM}$\ast$ bdm::BM::\_\-copy\_\- (bool {\em changerv} = {\tt false})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} | 
|---|
| 233 | \label{classbdm_1_1BM_3efb3098172f1f67564a312fe732473e} | 
|---|
| 234 |  | 
|---|
| 235 |  | 
|---|
| 236 | Copy function required in vectors, Arrays of \hyperlink{classbdm_1_1BM}{BM} etc. Have to be DELETED manually! Prototype: BM$\ast$ \hyperlink{classbdm_1_1BM_3efb3098172f1f67564a312fe732473e}{\_\-copy\_\-()}\{\hyperlink{classbdm_1_1BM}{BM} Tmp$\ast$=new Tmp(this$\ast$); return Tmp; \}  | 
|---|
| 237 |  | 
|---|
| 238 | Reimplemented in \hyperlink{classbdm_1_1ARX_20ff2de8d862f28de7da83444d65bcdb}{bdm::ARX}, and \hyperlink{classbdm_1_1BMEF_5912dbcf28ae711e30b08c2fa766a3e6}{bdm::BMEF}. | 
|---|
| 239 |  | 
|---|
| 240 | The documentation for this class was generated from the following files:\begin{CompactItemize} | 
|---|
| 241 | \item  | 
|---|
| 242 | \hyperlink{libKF_8h}{libKF.h}\item  | 
|---|
| 243 | libKF.cpp\end{CompactItemize} | 
|---|