root/doc/latex/classbdm_1_1EKFfull.tex @ 270

Revision 270, 11.7 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

Line 
1\hypertarget{classbdm_1_1EKFfull}{
2\section{bdm::EKFfull Class Reference}
3\label{classbdm_1_1EKFfull}\index{bdm::EKFfull@{bdm::EKFfull}}
4}
5{\tt \#include $<$libKF.h$>$}
6
7Inheritance diagram for bdm::EKFfull:\nopagebreak
8\begin{figure}[H]
9\begin{center}
10\leavevmode
11\includegraphics[width=113pt]{classbdm_1_1EKFfull__inherit__graph}
12\end{center}
13\end{figure}
14
15
16\subsection{Detailed Description}
17Extended \hyperlink{classbdm_1_1Kalman}{Kalman} Filter in full matrices.
18
19An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. \subsection*{Public Member Functions}
20\begin{CompactItemize}
21\item 
22\hypertarget{classbdm_1_1EKFfull_6939c345389abb8b2481457b4cfe1165}{
23\hyperlink{classbdm_1_1EKFfull_6939c345389abb8b2481457b4cfe1165}{EKFfull} ()}
24\label{classbdm_1_1EKFfull_6939c345389abb8b2481457b4cfe1165}
25
26\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
27\hypertarget{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743}{
28void \hyperlink{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743}{set\_\-parameters} (\hyperlink{classbdm_1_1diffbifn}{diffbifn} $\ast$pfxu, \hyperlink{classbdm_1_1diffbifn}{diffbifn} $\ast$phxu, const mat Q0, const mat R0)}
29\label{classbdm_1_1EKFfull_78748da361ba61fef162b0d8956d1743}
30
31\begin{CompactList}\small\item\em Set nonlinear functions for mean values and covariance matrices. \item\end{CompactList}\item 
32\hypertarget{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699}{
33void \hyperlink{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699}{bayes} (const vec \&dt)}
34\label{classbdm_1_1EKFfull_f149ae8e9ce14d9931a7bb2850736699}
35
36\begin{CompactList}\small\item\em Here dt = \mbox{[}yt;ut\mbox{]} of appropriate dimensions. \item\end{CompactList}\item 
37\hypertarget{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2}{
38void \hyperlink{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2}{set\_\-est} (vec mu0, mat P0)}
39\label{classbdm_1_1EKFfull_7562b3d3c17241dab3baf70258742eb2}
40
41\begin{CompactList}\small\item\em set estimates \item\end{CompactList}\item 
42\hypertarget{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a}{
43const \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a}{\_\-epdf} () const }
44\label{classbdm_1_1EKFfull_6ccc4fa7da522d1c2257156f72291a8a}
45
46\begin{CompactList}\small\item\em dummy! \item\end{CompactList}\item 
47\hypertarget{classbdm_1_1EKFfull_3d0e427d4d2fb7ac20358ce629f5d510}{
48const \hyperlink{classbdm_1_1enorm}{enorm}$<$ \hyperlink{classfsqmat}{fsqmat} $>$ $\ast$ \textbf{\_\-e} () const }
49\label{classbdm_1_1EKFfull_3d0e427d4d2fb7ac20358ce629f5d510}
50
51\item 
52\hypertarget{classbdm_1_1EKFfull_d4f57cb8af64b06c530f528c32596d4d}{
53const mat \textbf{\_\-R} ()}
54\label{classbdm_1_1EKFfull_d4f57cb8af64b06c530f528c32596d4d}
55
56\end{CompactItemize}
57\begin{Indent}{\bf Constructors}\par
58\begin{CompactItemize}
59\item 
60virtual \hyperlink{classbdm_1_1BM}{BM} $\ast$ \hyperlink{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff}{\_\-copy\_\-} ()
61\end{CompactItemize}
62\end{Indent}
63\begin{Indent}{\bf Mathematical operations}\par
64\begin{CompactItemize}
65\item 
66\hypertarget{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{
67virtual void \hyperlink{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{bayesB} (const mat \&Dt)}
68\label{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}
69
70\begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 
71virtual double \hyperlink{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{logpred} (const vec \&dt) const
72\item 
73\hypertarget{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{
74vec \hyperlink{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{logpred\_\-m} (const mat \&dt) const }
75\label{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}
76
77\begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item 
78\hypertarget{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba}{
79virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba}{epredictor} () const }
80\label{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba}
81
82\begin{CompactList}\small\item\em Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $. \item\end{CompactList}\item 
83\hypertarget{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}{
84virtual \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}{predictor} () const }
85\label{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}
86
87\begin{CompactList}\small\item\em Constructs a conditional density 1-step ahead predictor. \item\end{CompactList}\end{CompactItemize}
88\end{Indent}
89\begin{Indent}{\bf Access to attributes}\par
90\begin{CompactItemize}
91\item 
92\hypertarget{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c}{
93const \hyperlink{classbdm_1_1RV}{RV} \& \textbf{\_\-drv} () const }
94\label{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c}
95
96\item 
97\hypertarget{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96}{
98void \textbf{set\_\-drv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv)}
99\label{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96}
100
101\item 
102\hypertarget{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}{
103double \textbf{\_\-ll} () const }
104\label{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}
105
106\item 
107\hypertarget{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}{
108void \textbf{set\_\-evalll} (bool evl0)}
109\label{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}
110
111\end{CompactItemize}
112\end{Indent}
113\subsection*{Public Attributes}
114\begin{CompactItemize}
115\item 
116\hypertarget{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666}{
117vec \hyperlink{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666}{mu}}
118\label{classbdm_1_1KalmanFull_2defb75e58892615c5f95fd844f3a666}
119
120\begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item 
121\hypertarget{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c}{
122mat \hyperlink{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c}{P}}
123\label{classbdm_1_1KalmanFull_acacd228e100c3e937de575ad2d7cd9c}
124
125\begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\item 
126\hypertarget{classbdm_1_1KalmanFull_0dba34bfba2aedd8c488692bcd14869b}{
127bool \textbf{evalll}}
128\label{classbdm_1_1KalmanFull_0dba34bfba2aedd8c488692bcd14869b}
129
130\item 
131\hypertarget{classbdm_1_1KalmanFull_363ade67bd5a06c6a45c41e4d8afe11e}{
132double \textbf{ll}}
133\label{classbdm_1_1KalmanFull_363ade67bd5a06c6a45c41e4d8afe11e}
134
135\end{CompactItemize}
136\subsection*{Protected Attributes}
137\begin{CompactItemize}
138\item 
139\hypertarget{classbdm_1_1KalmanFull_427886a66cde0354e041ddef5aa60eab}{
140int \textbf{dimx}}
141\label{classbdm_1_1KalmanFull_427886a66cde0354e041ddef5aa60eab}
142
143\item 
144\hypertarget{classbdm_1_1KalmanFull_2b0399b8904ccb81c2098cc3cc85ff8f}{
145int \textbf{dimy}}
146\label{classbdm_1_1KalmanFull_2b0399b8904ccb81c2098cc3cc85ff8f}
147
148\item 
149\hypertarget{classbdm_1_1KalmanFull_8e886b5d535ba7f9a39e66be34116788}{
150int \textbf{dimu}}
151\label{classbdm_1_1KalmanFull_8e886b5d535ba7f9a39e66be34116788}
152
153\item 
154\hypertarget{classbdm_1_1KalmanFull_a24914cfc0297b9f3885df86e5011733}{
155mat \textbf{A}}
156\label{classbdm_1_1KalmanFull_a24914cfc0297b9f3885df86e5011733}
157
158\item 
159\hypertarget{classbdm_1_1KalmanFull_ef28133db32cc60b710925266c37376d}{
160mat \textbf{B}}
161\label{classbdm_1_1KalmanFull_ef28133db32cc60b710925266c37376d}
162
163\item 
164\hypertarget{classbdm_1_1KalmanFull_89ed156e063e19b32df2218bfaef42cf}{
165mat \textbf{C}}
166\label{classbdm_1_1KalmanFull_89ed156e063e19b32df2218bfaef42cf}
167
168\item 
169\hypertarget{classbdm_1_1KalmanFull_74e9f43b5b4d4a5e012e6178542d3e8f}{
170mat \textbf{D}}
171\label{classbdm_1_1KalmanFull_74e9f43b5b4d4a5e012e6178542d3e8f}
172
173\item 
174\hypertarget{classbdm_1_1KalmanFull_5c1fc8685511d21ba0e1688452105b7c}{
175mat \textbf{R}}
176\label{classbdm_1_1KalmanFull_5c1fc8685511d21ba0e1688452105b7c}
177
178\item 
179\hypertarget{classbdm_1_1KalmanFull_17d9a3316ecf81c149c2c1affb11af58}{
180mat \textbf{Q}}
181\label{classbdm_1_1KalmanFull_17d9a3316ecf81c149c2c1affb11af58}
182
183\item 
184\hypertarget{classbdm_1_1KalmanFull_f7fc60eca2893328d42f92246526d4b9}{
185mat \textbf{\_\-Pp}}
186\label{classbdm_1_1KalmanFull_f7fc60eca2893328d42f92246526d4b9}
187
188\item 
189\hypertarget{classbdm_1_1KalmanFull_b85742b33f95077f360a03ca2de05261}{
190mat \textbf{\_\-Ry}}
191\label{classbdm_1_1KalmanFull_b85742b33f95077f360a03ca2de05261}
192
193\item 
194\hypertarget{classbdm_1_1KalmanFull_09472aa8c06e79944d7637b70bf4e401}{
195mat \textbf{\_\-iRy}}
196\label{classbdm_1_1KalmanFull_09472aa8c06e79944d7637b70bf4e401}
197
198\item 
199\hypertarget{classbdm_1_1KalmanFull_7455b5deee5f14d978c82c5cc9357e29}{
200mat \textbf{\_\-K}}
201\label{classbdm_1_1KalmanFull_7455b5deee5f14d978c82c5cc9357e29}
202
203\item 
204\hypertarget{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{
205\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{drv}}
206\label{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}
207
208\begin{CompactList}\small\item\em Random variable of the data (optional). \item\end{CompactList}\item 
209\hypertarget{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{
210double \hyperlink{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ll}}
211\label{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}
212
213\begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 
214\hypertarget{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{
215bool \hyperlink{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{evalll}}
216\label{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}
217
218\begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize}
219\subsection*{Friends}
220\begin{CompactItemize}
221\item 
222\hypertarget{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af}{
223std::ostream \& \hyperlink{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classbdm_1_1KalmanFull}{KalmanFull} \&kf)}
224\label{classbdm_1_1KalmanFull_86ba216243ed95bb46d80d88775d16af}
225
226\begin{CompactList}\small\item\em print elements of KF \item\end{CompactList}\end{CompactItemize}
227
228
229\subsection{Member Function Documentation}
230\hypertarget{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff}{
231\index{bdm::EKFfull@{bdm::EKFfull}!\_\-copy\_\-@{\_\-copy\_\-}}
232\index{\_\-copy\_\-@{\_\-copy\_\-}!bdm::EKFfull@{bdm::EKFfull}}
233\subsubsection[\_\-copy\_\-]{\setlength{\rightskip}{0pt plus 5cm}virtual {\bf BM}$\ast$ bdm::BM::\_\-copy\_\- ()\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
234\label{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff}
235
236
237Copy function required in vectors, Arrays of \hyperlink{classbdm_1_1BM}{BM} etc. Have to be DELETED manually! Prototype:
238
239\begin{Code}\begin{verbatim} BM* _copy_(){return new BM(*this);} 
240\end{verbatim}
241\end{Code}
242
243 
244
245Reimplemented in \hyperlink{classbdm_1_1ARX_60c40b5c6abc4c7e464b4ccae64a5a61}{bdm::ARX}.\hypertarget{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{
246\index{bdm::EKFfull@{bdm::EKFfull}!logpred@{logpred}}
247\index{logpred@{logpred}!bdm::EKFfull@{bdm::EKFfull}}
248\subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}virtual double bdm::BM::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
249\label{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}
250
251
252Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
253
254Reimplemented in \hyperlink{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}{bdm::ARX}, \hyperlink{classbdm_1_1MixEF_da724da464a75e07521941e430929efa}{bdm::MixEF}, and \hyperlink{classbdm_1_1multiBM_e157b607c1e3fa91d42aeea44458e2bf}{bdm::multiBM}.
255
256Referenced by bdm::BM::logpred\_\-m().
257
258The documentation for this class was generated from the following files:\begin{CompactItemize}
259\item 
260\hyperlink{libKF_8h}{libKF.h}\item 
261libKF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.