[261] | 1 | \hypertarget{classbdm_1_1PF}{ |
---|
| 2 | \section{bdm::PF Class Reference} |
---|
| 3 | \label{classbdm_1_1PF}\index{bdm::PF@{bdm::PF}} |
---|
| 4 | } |
---|
| 5 | {\tt \#include $<$libPF.h$>$} |
---|
| 6 | |
---|
[271] | 7 | Inheritance diagram for bdm::PF::\begin{figure}[H] |
---|
[261] | 8 | \begin{center} |
---|
| 9 | \leavevmode |
---|
[271] | 10 | \includegraphics[height=4cm]{classbdm_1_1PF} |
---|
[261] | 11 | \end{center} |
---|
| 12 | \end{figure} |
---|
[270] | 13 | |
---|
| 14 | |
---|
| 15 | \subsection{Detailed Description} |
---|
| 16 | Trivial particle filter with proposal density equal to parameter evolution model. |
---|
| 17 | |
---|
| 18 | Posterior density is represented by a weighted empirical density ({\tt \hyperlink{classbdm_1_1eEmp}{eEmp}} ). \subsection*{Public Member Functions} |
---|
[261] | 19 | \begin{CompactItemize} |
---|
| 20 | \item |
---|
[271] | 21 | void \hyperlink{classbdm_1_1PF_6f1988db4c3f602d187a6c15ec89cb1e}{set\_\-est} (const \hyperlink{classbdm_1_1epdf}{epdf} \&epdf0) |
---|
| 22 | \item |
---|
[261] | 23 | void \hyperlink{classbdm_1_1PF_638946eea22d4964bf9350286bb4efd8}{bayes} (const vec \&dt) |
---|
| 24 | \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item |
---|
| 25 | \hypertarget{classbdm_1_1PF_78a9f6809827be1d9bfe215d03b1c6ed}{ |
---|
| 26 | vec $\ast$ \hyperlink{classbdm_1_1PF_78a9f6809827be1d9bfe215d03b1c6ed}{\_\-\_\-w} ()} |
---|
| 27 | \label{classbdm_1_1PF_78a9f6809827be1d9bfe215d03b1c6ed} |
---|
| 28 | |
---|
[270] | 29 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
| 30 | \begin{Indent}{\bf Constructors}\par |
---|
| 31 | \begin{CompactItemize} |
---|
| 32 | \item |
---|
[271] | 33 | \hypertarget{classbdm_1_1PF_297339fd48bc1cfd011d16603d54accb}{ |
---|
| 34 | \textbf{PF} ()} |
---|
| 35 | \label{classbdm_1_1PF_297339fd48bc1cfd011d16603d54accb} |
---|
| 36 | |
---|
| 37 | \item |
---|
| 38 | \hypertarget{classbdm_1_1PF_3b9fdf0d1e712392bfcad5a26c727d44}{ |
---|
| 39 | \textbf{PF} (\hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$par0, \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$obs0, \hyperlink{classbdm_1_1epdf}{epdf} $\ast$epdf0, int n0)} |
---|
| 40 | \label{classbdm_1_1PF_3b9fdf0d1e712392bfcad5a26c727d44} |
---|
| 41 | |
---|
| 42 | \item |
---|
| 43 | \hypertarget{classbdm_1_1PF_e6d63c627cd1600eb0a88294d0ff6ca3}{ |
---|
| 44 | void \textbf{set\_\-parameters} (\hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$par0, \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$obs0, int n0)} |
---|
| 45 | \label{classbdm_1_1PF_e6d63c627cd1600eb0a88294d0ff6ca3} |
---|
| 46 | |
---|
| 47 | \item |
---|
| 48 | \hypertarget{classbdm_1_1PF_9830cb311f67e8276d3f2b167ab681b9}{ |
---|
| 49 | void \textbf{set\_\-statistics} (const vec w0, \hyperlink{classbdm_1_1epdf}{epdf} $\ast$epdf0)} |
---|
| 50 | \label{classbdm_1_1PF_9830cb311f67e8276d3f2b167ab681b9} |
---|
| 51 | |
---|
| 52 | \end{CompactItemize} |
---|
| 53 | \end{Indent} |
---|
| 54 | \begin{Indent}{\bf Constructors}\par |
---|
| 55 | \begin{CompactItemize} |
---|
| 56 | \item |
---|
[270] | 57 | virtual \hyperlink{classbdm_1_1BM}{BM} $\ast$ \hyperlink{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff}{\_\-copy\_\-} () |
---|
| 58 | \end{CompactItemize} |
---|
| 59 | \end{Indent} |
---|
| 60 | \begin{Indent}{\bf Mathematical operations}\par |
---|
| 61 | \begin{CompactItemize} |
---|
| 62 | \item |
---|
[261] | 63 | \hypertarget{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{ |
---|
| 64 | virtual void \hyperlink{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc}{bayesB} (const mat \&Dt)} |
---|
| 65 | \label{classbdm_1_1BM_1dee3fddaf021e62d925289660a707dc} |
---|
| 66 | |
---|
| 67 | \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item |
---|
| 68 | virtual double \hyperlink{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{logpred} (const vec \&dt) const |
---|
| 69 | \item |
---|
| 70 | \hypertarget{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{ |
---|
| 71 | vec \hyperlink{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae}{logpred\_\-m} (const mat \&dt) const } |
---|
| 72 | \label{classbdm_1_1BM_0e8ebe61fb14990abe1254bd3dda5fae} |
---|
| 73 | |
---|
| 74 | \begin{CompactList}\small\item\em Matrix version of logpred. \item\end{CompactList}\item |
---|
[270] | 75 | \hypertarget{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba}{ |
---|
| 76 | virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba}{epredictor} () const } |
---|
| 77 | \label{classbdm_1_1BM_688d7a2aced1e06aa1c468d73a9e5eba} |
---|
[261] | 78 | |
---|
[270] | 79 | \begin{CompactList}\small\item\em Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $. \item\end{CompactList}\item |
---|
| 80 | \hypertarget{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}{ |
---|
| 81 | virtual \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912}{predictor} () const } |
---|
| 82 | \label{classbdm_1_1BM_598b25e3f3d96a5bc00a5faeb5b3c912} |
---|
[261] | 83 | |
---|
[270] | 84 | \begin{CompactList}\small\item\em Constructs a conditional density 1-step ahead predictor. \item\end{CompactList}\end{CompactItemize} |
---|
| 85 | \end{Indent} |
---|
| 86 | \begin{Indent}{\bf Access to attributes}\par |
---|
| 87 | \begin{CompactItemize} |
---|
| 88 | \item |
---|
[269] | 89 | \hypertarget{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c}{ |
---|
[270] | 90 | const \hyperlink{classbdm_1_1RV}{RV} \& \textbf{\_\-drv} () const } |
---|
[269] | 91 | \label{classbdm_1_1BM_ff2d8755ba0b3def927d31305c03b09c} |
---|
| 92 | |
---|
[270] | 93 | \item |
---|
[269] | 94 | \hypertarget{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96}{ |
---|
[270] | 95 | void \textbf{set\_\-drv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv)} |
---|
[269] | 96 | \label{classbdm_1_1BM_f135ae6dce7e9f30c9f88229c7930b96} |
---|
| 97 | |
---|
[270] | 98 | \item |
---|
[271] | 99 | \hypertarget{classbdm_1_1BM_b38d92f17620813ad872d86e01a26e5e}{ |
---|
| 100 | void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv)} |
---|
| 101 | \label{classbdm_1_1BM_b38d92f17620813ad872d86e01a26e5e} |
---|
| 102 | |
---|
| 103 | \item |
---|
[261] | 104 | \hypertarget{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70}{ |
---|
[270] | 105 | double \textbf{\_\-ll} () const } |
---|
[261] | 106 | \label{classbdm_1_1BM_5be65d37dedfe33a3671e7065f523a70} |
---|
| 107 | |
---|
[270] | 108 | \item |
---|
[261] | 109 | \hypertarget{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f}{ |
---|
[270] | 110 | void \textbf{set\_\-evalll} (bool evl0)} |
---|
[261] | 111 | \label{classbdm_1_1BM_236b3abbcc93594fc97cd86d82c1a83f} |
---|
| 112 | |
---|
[270] | 113 | \item |
---|
[271] | 114 | \hypertarget{classbdm_1_1BM_bb7b0065d6cb722a66b371a8260121e1}{ |
---|
| 115 | virtual const \hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{posterior} () const =0} |
---|
| 116 | \label{classbdm_1_1BM_bb7b0065d6cb722a66b371a8260121e1} |
---|
[270] | 117 | |
---|
| 118 | \item |
---|
| 119 | \hypertarget{classbdm_1_1BM_4ed0f8b880e606316ae800f3a011c3a6}{ |
---|
| 120 | virtual const \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} () const =0} |
---|
| 121 | \label{classbdm_1_1BM_4ed0f8b880e606316ae800f3a011c3a6} |
---|
| 122 | |
---|
[261] | 123 | \end{CompactItemize} |
---|
[270] | 124 | \end{Indent} |
---|
[261] | 125 | \subsection*{Protected Attributes} |
---|
| 126 | \begin{CompactItemize} |
---|
| 127 | \item |
---|
| 128 | \hypertarget{classbdm_1_1PF_eeafaf9b8ad75fe62ee9fd6369e3f7fe}{ |
---|
| 129 | int \hyperlink{classbdm_1_1PF_eeafaf9b8ad75fe62ee9fd6369e3f7fe}{n}} |
---|
| 130 | \label{classbdm_1_1PF_eeafaf9b8ad75fe62ee9fd6369e3f7fe} |
---|
| 131 | |
---|
| 132 | \begin{CompactList}\small\item\em number of particles; \item\end{CompactList}\item |
---|
| 133 | \hypertarget{classbdm_1_1PF_dc049265b9086cad7071f98d00a2b9af}{ |
---|
| 134 | \hyperlink{classbdm_1_1eEmp}{eEmp} \hyperlink{classbdm_1_1PF_dc049265b9086cad7071f98d00a2b9af}{est}} |
---|
| 135 | \label{classbdm_1_1PF_dc049265b9086cad7071f98d00a2b9af} |
---|
| 136 | |
---|
| 137 | \begin{CompactList}\small\item\em posterior density \item\end{CompactList}\item |
---|
| 138 | \hypertarget{classbdm_1_1PF_f5149d5522d1095d39240c4c607f61a3}{ |
---|
| 139 | vec \& \hyperlink{classbdm_1_1PF_f5149d5522d1095d39240c4c607f61a3}{\_\-w}} |
---|
| 140 | \label{classbdm_1_1PF_f5149d5522d1095d39240c4c607f61a3} |
---|
| 141 | |
---|
| 142 | \begin{CompactList}\small\item\em pointer into {\tt \hyperlink{classbdm_1_1eEmp}{eEmp}} \item\end{CompactList}\item |
---|
| 143 | \hypertarget{classbdm_1_1PF_914bd66025692c4018dbd482cb3c47c1}{ |
---|
| 144 | Array$<$ vec $>$ \& \hyperlink{classbdm_1_1PF_914bd66025692c4018dbd482cb3c47c1}{\_\-samples}} |
---|
| 145 | \label{classbdm_1_1PF_914bd66025692c4018dbd482cb3c47c1} |
---|
| 146 | |
---|
| 147 | \begin{CompactList}\small\item\em pointer into {\tt \hyperlink{classbdm_1_1eEmp}{eEmp}} \item\end{CompactList}\item |
---|
[271] | 148 | \hypertarget{classbdm_1_1PF_521e9621d3b5e1274275f323691afdaf}{ |
---|
| 149 | \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1PF_521e9621d3b5e1274275f323691afdaf}{par}} |
---|
| 150 | \label{classbdm_1_1PF_521e9621d3b5e1274275f323691afdaf} |
---|
[261] | 151 | |
---|
| 152 | \begin{CompactList}\small\item\em Parameter evolution model. \item\end{CompactList}\item |
---|
[271] | 153 | \hypertarget{classbdm_1_1PF_d6e7a62fba1e0a0d73c9b87f4fb683ec}{ |
---|
| 154 | \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1PF_d6e7a62fba1e0a0d73c9b87f4fb683ec}{obs}} |
---|
| 155 | \label{classbdm_1_1PF_d6e7a62fba1e0a0d73c9b87f4fb683ec} |
---|
[261] | 156 | |
---|
| 157 | \begin{CompactList}\small\item\em Observation model. \item\end{CompactList}\item |
---|
[269] | 158 | \hypertarget{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{ |
---|
| 159 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed}{drv}} |
---|
| 160 | \label{classbdm_1_1BM_c400357e37d27a4834b2b1d9211009ed} |
---|
| 161 | |
---|
| 162 | \begin{CompactList}\small\item\em Random variable of the data (optional). \item\end{CompactList}\item |
---|
[261] | 163 | \hypertarget{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ |
---|
| 164 | double \hyperlink{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a}{ll}} |
---|
| 165 | \label{classbdm_1_1BM_4064b6559d962633e4372b12f4cd204a} |
---|
| 166 | |
---|
| 167 | \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item |
---|
| 168 | \hypertarget{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{ |
---|
| 169 | bool \hyperlink{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee}{evalll}} |
---|
| 170 | \label{classbdm_1_1BM_faff0ad12556fe7dc0e2807d4fd938ee} |
---|
| 171 | |
---|
| 172 | \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save computational time. \item\end{CompactList}\end{CompactItemize} |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | \subsection{Member Function Documentation} |
---|
[271] | 176 | \hypertarget{classbdm_1_1PF_6f1988db4c3f602d187a6c15ec89cb1e}{ |
---|
| 177 | \index{bdm::PF@{bdm::PF}!set\_\-est@{set\_\-est}} |
---|
| 178 | \index{set\_\-est@{set\_\-est}!bdm::PF@{bdm::PF}} |
---|
| 179 | \subsubsection[set\_\-est]{\setlength{\rightskip}{0pt plus 5cm}void bdm::PF::set\_\-est (const {\bf epdf} \& {\em epdf0})}} |
---|
| 180 | \label{classbdm_1_1PF_6f1988db4c3f602d187a6c15ec89cb1e} |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | Set posterior density by sampling from epdf0 |
---|
| 184 | |
---|
| 185 | Reimplemented in \hyperlink{classbdm_1_1MPF_dcecdaf2acbbee51acf3018a70989a7e}{bdm::MPF$<$ BM\_\-T $>$}. |
---|
| 186 | |
---|
| 187 | References \_\-samples, n, and bdm::epdf::sample(). |
---|
| 188 | |
---|
| 189 | Referenced by bdm::MPF$<$ BM\_\-T $>$::set\_\-est().\hypertarget{classbdm_1_1PF_638946eea22d4964bf9350286bb4efd8}{ |
---|
[261] | 190 | \index{bdm::PF@{bdm::PF}!bayes@{bayes}} |
---|
| 191 | \index{bayes@{bayes}!bdm::PF@{bdm::PF}} |
---|
| 192 | \subsubsection[bayes]{\setlength{\rightskip}{0pt plus 5cm}void bdm::PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 193 | \label{classbdm_1_1PF_638946eea22d4964bf9350286bb4efd8} |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | Incremental Bayes rule. |
---|
| 197 | |
---|
| 198 | \begin{Desc} |
---|
| 199 | \item[Parameters:] |
---|
| 200 | \begin{description} |
---|
| 201 | \item[{\em dt}]vector of input data \end{description} |
---|
| 202 | \end{Desc} |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | Implements \hyperlink{classbdm_1_1BM_60b1779a577367c369a932cabd3a6188}{bdm::BM}. |
---|
| 206 | |
---|
| 207 | Reimplemented in \hyperlink{classbdm_1_1MPF_286d040770d08bd7ff416cea617b1b14}{bdm::MPF$<$ BM\_\-T $>$}. |
---|
| 208 | |
---|
[270] | 209 | References bdm::mpdf::\_\-e(), \_\-samples, \_\-w, est, bdm::epdf::evallog(), bdm::mpdf::evallogcond(), n, obs, par, bdm::eEmp::resample(), and bdm::mpdf::samplecond().\hypertarget{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff}{ |
---|
| 210 | \index{bdm::PF@{bdm::PF}!\_\-copy\_\-@{\_\-copy\_\-}} |
---|
| 211 | \index{\_\-copy\_\-@{\_\-copy\_\-}!bdm::PF@{bdm::PF}} |
---|
| 212 | \subsubsection[\_\-copy\_\-]{\setlength{\rightskip}{0pt plus 5cm}virtual {\bf BM}$\ast$ bdm::BM::\_\-copy\_\- ()\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
| 213 | \label{classbdm_1_1BM_c0f027ff91d8459937c6f60ff8e553ff} |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | Copy function required in vectors, Arrays of \hyperlink{classbdm_1_1BM}{BM} etc. Have to be DELETED manually! Prototype: |
---|
| 217 | |
---|
| 218 | \begin{Code}\begin{verbatim} BM* _copy_(){return new BM(*this);} |
---|
| 219 | \end{verbatim} |
---|
| 220 | \end{Code} |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | Reimplemented in \hyperlink{classbdm_1_1ARX_60c40b5c6abc4c7e464b4ccae64a5a61}{bdm::ARX}.\hypertarget{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0}{ |
---|
[261] | 225 | \index{bdm::PF@{bdm::PF}!logpred@{logpred}} |
---|
| 226 | \index{logpred@{logpred}!bdm::PF@{bdm::PF}} |
---|
| 227 | \subsubsection[logpred]{\setlength{\rightskip}{0pt plus 5cm}virtual double bdm::BM::logpred (const vec \& {\em dt}) const\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
| 228 | \label{classbdm_1_1BM_50257e0c1e5b5c73153ea6e716ad8ae0} |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out. |
---|
| 232 | |
---|
| 233 | Reimplemented in \hyperlink{classbdm_1_1ARX_080a7e531e3aa06694112863b15bc6a4}{bdm::ARX}, \hyperlink{classbdm_1_1MixEF_da724da464a75e07521941e430929efa}{bdm::MixEF}, and \hyperlink{classbdm_1_1multiBM_e157b607c1e3fa91d42aeea44458e2bf}{bdm::multiBM}. |
---|
| 234 | |
---|
[270] | 235 | Referenced by bdm::BM::logpred\_\-m(). |
---|
[261] | 236 | |
---|
| 237 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
| 238 | \item |
---|
| 239 | \hyperlink{libPF_8h}{libPF.h}\item |
---|
| 240 | libPF.cpp\end{CompactItemize} |
---|