\hypertarget{classbdm_1_1bilinfn}{ \section{bdm::bilinfn Class Reference} \label{classbdm_1_1bilinfn}\index{bdm::bilinfn@{bdm::bilinfn}} } {\tt \#include $<$libFN.h$>$} Inheritance diagram for bdm::bilinfn::\begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=4cm]{classbdm_1_1bilinfn} \end{center} \end{figure} \subsection{Detailed Description} Class representing function $f(x,u) = Ax+Bu$. \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{ vec \hyperlink{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{eval} (const vec \&cond)} \label{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3} \begin{CompactList}\small\item\em Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ). \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{ int \hyperlink{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{\_\-dimx} () const } \label{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{ int \hyperlink{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{\_\-dimu} () const } \label{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{ virtual void \hyperlink{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{condition} (const vec \&val)} \label{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e} \begin{CompactList}\small\item\em function substitutes given value into an appropriate position \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{ int \hyperlink{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{\_\-dimy} () const } \label{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \begin{Indent}{\bf Constructors}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1bilinfn_dc263f8d8d1876023a9d161d17a3c621}{ \textbf{bilinfn} ()} \label{classbdm_1_1bilinfn_dc263f8d8d1876023a9d161d17a3c621} \item \hypertarget{classbdm_1_1bilinfn_91d7d9fcd6146ddf7eef13f02df10f79}{ \textbf{bilinfn} (const mat A0, const mat B0)} \label{classbdm_1_1bilinfn_91d7d9fcd6146ddf7eef13f02df10f79} \item \hypertarget{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de}{ void \hyperlink{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de}{set\_\-parameters} (const mat A0, const mat B0)} \label{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de} \begin{CompactList}\small\item\em Alternative constructor. \item\end{CompactList}\end{CompactItemize} \end{Indent} \begin{Indent}{\bf Mathematical operations}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24}{ vec \hyperlink{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24}{eval} (const vec \&x0, const vec \&u0)} \label{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24} \begin{CompactList}\small\item\em Evaluates $f(x0,u0)$. \item\end{CompactList}\item void \hyperlink{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6}{dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full) \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item void \hyperlink{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08}{dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full=true) \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\end{CompactItemize} \end{Indent} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{rvx}} \label{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb} \begin{CompactList}\small\item\em Indentifier of the first rv. \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{rvu}} \label{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320} \begin{CompactList}\small\item\em Indentifier of the second rv. \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{ int \hyperlink{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{dimx}} \label{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e} \begin{CompactList}\small\item\em cache for rvx.count() \item\end{CompactList}\item \hypertarget{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{ int \hyperlink{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{dimu}} \label{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0} \begin{CompactList}\small\item\em cache for rvu.count() \item\end{CompactList}\item \hypertarget{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{ int \hyperlink{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{dimy}} \label{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62} \begin{CompactList}\small\item\em Length of the output vector. \item\end{CompactList}\end{CompactItemize} \subsection{Member Function Documentation} \hypertarget{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6}{ \index{bdm::bilinfn@{bdm::bilinfn}!dfdx\_\-cond@{dfdx\_\-cond}} \index{dfdx\_\-cond@{dfdx\_\-cond}!bdm::bilinfn@{bdm::bilinfn}} \subsubsection[dfdx\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void bdm::bilinfn::dfdx\_\-cond (const vec \& {\em x0}, \/ const vec \& {\em u0}, \/ mat \& {\em A}, \/ bool {\em full})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} \label{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6} Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \begin{Desc} \item[Parameters:] \begin{description} \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description} \end{Desc} Reimplemented from \hyperlink{classbdm_1_1diffbifn_651184f808a35f236dbfea21aca1b6ac}{bdm::diffbifn}.\hypertarget{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08}{ \index{bdm::bilinfn@{bdm::bilinfn}!dfdu\_\-cond@{dfdu\_\-cond}} \index{dfdu\_\-cond@{dfdu\_\-cond}!bdm::bilinfn@{bdm::bilinfn}} \subsubsection[dfdu\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void bdm::bilinfn::dfdu\_\-cond (const vec \& {\em x0}, \/ const vec \& {\em u0}, \/ mat \& {\em A}, \/ bool {\em full} = {\tt true})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} \label{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08} Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \begin{Desc} \item[Parameters:] \begin{description} \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description} \end{Desc} Reimplemented from \hyperlink{classbdm_1_1diffbifn_6ea1dc7a482601b29c5ba36a52d20d07}{bdm::diffbifn}. The documentation for this class was generated from the following files:\begin{CompactItemize} \item libFN.h\item libFN.cpp\end{CompactItemize}