root/doc/latex/classbdm_1_1bilinfn.tex @ 271

Revision 271, 7.5 kB (checked in by smidl, 16 years ago)

Next major revision

Line 
1\hypertarget{classbdm_1_1bilinfn}{
2\section{bdm::bilinfn Class Reference}
3\label{classbdm_1_1bilinfn}\index{bdm::bilinfn@{bdm::bilinfn}}
4}
5{\tt \#include $<$libFN.h$>$}
6
7Inheritance diagram for bdm::bilinfn::\begin{figure}[H]
8\begin{center}
9\leavevmode
10\includegraphics[height=4cm]{classbdm_1_1bilinfn}
11\end{center}
12\end{figure}
13
14
15\subsection{Detailed Description}
16Class representing function $f(x,u) = Ax+Bu$. \subsection*{Public Member Functions}
17\begin{CompactItemize}
18\item 
19\hypertarget{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{
20vec \hyperlink{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}{eval} (const vec \&cond)}
21\label{classbdm_1_1diffbifn_188f31066bd72e1bf0ddacd1eb0e6af3}
22
23\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ). \item\end{CompactList}\item 
24\hypertarget{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{
25int \hyperlink{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}{\_\-dimx} () const }
26\label{classbdm_1_1diffbifn_1b3c8f5949f13d86d2661e191d4b369b}
27
28\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
29\hypertarget{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{
30int \hyperlink{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}{\_\-dimu} () const }
31\label{classbdm_1_1diffbifn_031458f38c97cdb3aecde16f6a06dced}
32
33\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
34\hypertarget{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{
35virtual void \hyperlink{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}{condition} (const vec \&val)}
36\label{classbdm_1_1fnc_0786e40fade2663a70d654c1dda5d73e}
37
38\begin{CompactList}\small\item\em function substitutes given value into an appropriate position \item\end{CompactList}\item 
39\hypertarget{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{
40int \hyperlink{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}{\_\-dimy} () const }
41\label{classbdm_1_1fnc_a2277a400fc9f4d6c0bf24dc7156183f}
42
43\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
44\begin{Indent}{\bf Constructors}\par
45\begin{CompactItemize}
46\item 
47\hypertarget{classbdm_1_1bilinfn_dc263f8d8d1876023a9d161d17a3c621}{
48\textbf{bilinfn} ()}
49\label{classbdm_1_1bilinfn_dc263f8d8d1876023a9d161d17a3c621}
50
51\item 
52\hypertarget{classbdm_1_1bilinfn_91d7d9fcd6146ddf7eef13f02df10f79}{
53\textbf{bilinfn} (const mat A0, const mat B0)}
54\label{classbdm_1_1bilinfn_91d7d9fcd6146ddf7eef13f02df10f79}
55
56\item 
57\hypertarget{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de}{
58void \hyperlink{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de}{set\_\-parameters} (const mat A0, const mat B0)}
59\label{classbdm_1_1bilinfn_5a508fbb5fc013904d9b62b2231442de}
60
61\begin{CompactList}\small\item\em Alternative constructor. \item\end{CompactList}\end{CompactItemize}
62\end{Indent}
63\begin{Indent}{\bf Mathematical operations}\par
64\begin{CompactItemize}
65\item 
66\hypertarget{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24}{
67vec \hyperlink{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24}{eval} (const vec \&x0, const vec \&u0)}
68\label{classbdm_1_1bilinfn_e36a16e72e7f9fedf3cb18d2d5505a24}
69
70\begin{CompactList}\small\item\em Evaluates $f(x0,u0)$. \item\end{CompactList}\item 
71void \hyperlink{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6}{dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full)
72\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item 
73void \hyperlink{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08}{dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full=true)
74\begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\end{CompactItemize}
75\end{Indent}
76\subsection*{Protected Attributes}
77\begin{CompactItemize}
78\item 
79\hypertarget{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{
80\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}{rvx}}
81\label{classbdm_1_1diffbifn_5f56547d8e9378b669d3cc19d7831cbb}
82
83\begin{CompactList}\small\item\em Indentifier of the first rv. \item\end{CompactList}\item 
84\hypertarget{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{
85\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}{rvu}}
86\label{classbdm_1_1diffbifn_a8e3e861d5ec2a7ae9524e6338e58320}
87
88\begin{CompactList}\small\item\em Indentifier of the second rv. \item\end{CompactList}\item 
89\hypertarget{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{
90int \hyperlink{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}{dimx}}
91\label{classbdm_1_1diffbifn_a193aa2c4a500139c0c4b669691e588e}
92
93\begin{CompactList}\small\item\em cache for rvx.count() \item\end{CompactList}\item 
94\hypertarget{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{
95int \hyperlink{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}{dimu}}
96\label{classbdm_1_1diffbifn_30c45617eec89adeb4ebaa763d093fb0}
97
98\begin{CompactList}\small\item\em cache for rvu.count() \item\end{CompactList}\item 
99\hypertarget{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{
100int \hyperlink{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}{dimy}}
101\label{classbdm_1_1fnc_52156cb4a52a62d51fc7455985797a62}
102
103\begin{CompactList}\small\item\em Length of the output vector. \item\end{CompactList}\end{CompactItemize}
104
105
106\subsection{Member Function Documentation}
107\hypertarget{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6}{
108\index{bdm::bilinfn@{bdm::bilinfn}!dfdx\_\-cond@{dfdx\_\-cond}}
109\index{dfdx\_\-cond@{dfdx\_\-cond}!bdm::bilinfn@{bdm::bilinfn}}
110\subsubsection[dfdx\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void bdm::bilinfn::dfdx\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
111\label{classbdm_1_1bilinfn_33066f1054dd259df2ec5fafae4b46e6}
112
113
114Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
115
116\begin{Desc}
117\item[Parameters:]
118\begin{description}
119\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
120\end{Desc}
121
122
123Reimplemented from \hyperlink{classbdm_1_1diffbifn_651184f808a35f236dbfea21aca1b6ac}{bdm::diffbifn}.\hypertarget{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08}{
124\index{bdm::bilinfn@{bdm::bilinfn}!dfdu\_\-cond@{dfdu\_\-cond}}
125\index{dfdu\_\-cond@{dfdu\_\-cond}!bdm::bilinfn@{bdm::bilinfn}}
126\subsubsection[dfdu\_\-cond]{\setlength{\rightskip}{0pt plus 5cm}void bdm::bilinfn::dfdu\_\-cond (const vec \& {\em x0}, \/  const vec \& {\em u0}, \/  mat \& {\em A}, \/  bool {\em full} = {\tt true})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
127\label{classbdm_1_1bilinfn_9cfe2f1c115ba7c3c75849a10a4f2c08}
128
129
130Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} .
131
132\begin{Desc}
133\item[Parameters:]
134\begin{description}
135\item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \item[{\em x0}]numeric value of $x$, \item[{\em u0}]numeric value of $u$ \item[{\em A}]a place where the result will be stored. \end{description}
136\end{Desc}
137
138
139Reimplemented from \hyperlink{classbdm_1_1diffbifn_6ea1dc7a482601b29c5ba36a52d20d07}{bdm::diffbifn}.
140
141The documentation for this class was generated from the following files:\begin{CompactItemize}
142\item 
143libFN.h\item 
144libFN.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.