1 | \hypertarget{classbdm_1_1eDirich}{ |
---|
2 | \section{bdm::eDirich Class Reference} |
---|
3 | \label{classbdm_1_1eDirich}\index{bdm::eDirich@{bdm::eDirich}} |
---|
4 | } |
---|
5 | Dirichlet posterior density. |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$libEF.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for bdm::eDirich:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=64pt]{classbdm_1_1eDirich__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for bdm::eDirich:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=75pt]{classbdm_1_1eDirich__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classbdm_1_1eDirich_2ae893fe9167f67bca09bc159acbf957}{ |
---|
28 | \hyperlink{classbdm_1_1eDirich_2ae893fe9167f67bca09bc159acbf957}{eDirich} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}, const vec \&beta0)} |
---|
29 | \label{classbdm_1_1eDirich_2ae893fe9167f67bca09bc159acbf957} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
32 | \hypertarget{classbdm_1_1eDirich_31cc8bf709552c9e7286ac16b27c8e2c}{ |
---|
33 | \hyperlink{classbdm_1_1eDirich_31cc8bf709552c9e7286ac16b27c8e2c}{eDirich} (const \hyperlink{classbdm_1_1eDirich}{eDirich} \&D0)} |
---|
34 | \label{classbdm_1_1eDirich_31cc8bf709552c9e7286ac16b27c8e2c} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item |
---|
37 | \hypertarget{classbdm_1_1eDirich_3290613d31d58daa8a45a54b003871fc}{ |
---|
38 | vec \hyperlink{classbdm_1_1eDirich_3290613d31d58daa8a45a54b003871fc}{sample} () const } |
---|
39 | \label{classbdm_1_1eDirich_3290613d31d58daa8a45a54b003871fc} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item |
---|
42 | \hypertarget{classbdm_1_1eDirich_cb343355ec791298bb5a3404cd482fb6}{ |
---|
43 | vec \hyperlink{classbdm_1_1eDirich_cb343355ec791298bb5a3404cd482fb6}{mean} () const } |
---|
44 | \label{classbdm_1_1eDirich_cb343355ec791298bb5a3404cd482fb6} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item |
---|
47 | \hypertarget{classbdm_1_1eDirich_43c547a2507e233706f92712d8c2aacc}{ |
---|
48 | vec \hyperlink{classbdm_1_1eDirich_43c547a2507e233706f92712d8c2aacc}{variance} () const } |
---|
49 | \label{classbdm_1_1eDirich_43c547a2507e233706f92712d8c2aacc} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em return expected variance (not covariance!) \item\end{CompactList}\item |
---|
52 | \hypertarget{classbdm_1_1eDirich_e09a24938e80c3d94b0ee842d1552318}{ |
---|
53 | double \hyperlink{classbdm_1_1eDirich_e09a24938e80c3d94b0ee842d1552318}{evallog\_\-nn} (const vec \&val) const } |
---|
54 | \label{classbdm_1_1eDirich_e09a24938e80c3d94b0ee842d1552318} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em In this instance, val is ... \item\end{CompactList}\item |
---|
57 | \hypertarget{classbdm_1_1eDirich_279a99f6266c82fe2273e83841f19eb2}{ |
---|
58 | double \hyperlink{classbdm_1_1eDirich_279a99f6266c82fe2273e83841f19eb2}{lognc} () const } |
---|
59 | \label{classbdm_1_1eDirich_279a99f6266c82fe2273e83841f19eb2} |
---|
60 | |
---|
61 | \begin{CompactList}\small\item\em logarithm of the normalizing constant, $\mathcal{I}$ \item\end{CompactList}\item |
---|
62 | \hypertarget{classbdm_1_1eDirich_175e0add26d2105c28d8121eefb9e324}{ |
---|
63 | vec \& \hyperlink{classbdm_1_1eDirich_175e0add26d2105c28d8121eefb9e324}{\_\-beta} ()} |
---|
64 | \label{classbdm_1_1eDirich_175e0add26d2105c28d8121eefb9e324} |
---|
65 | |
---|
66 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
67 | \hypertarget{classbdm_1_1eDirich_a06af2376976a33e1eceaed7e8da75a5}{ |
---|
68 | void \hyperlink{classbdm_1_1eDirich_a06af2376976a33e1eceaed7e8da75a5}{set\_\-parameters} (const vec \&beta0)} |
---|
69 | \label{classbdm_1_1eDirich_a06af2376976a33e1eceaed7e8da75a5} |
---|
70 | |
---|
71 | \begin{CompactList}\small\item\em Set internal parameters. \item\end{CompactList}\item |
---|
72 | \hypertarget{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a}{ |
---|
73 | virtual void \hyperlink{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a}{dupdate} (mat \&v)} |
---|
74 | \label{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a} |
---|
75 | |
---|
76 | \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item |
---|
77 | \hypertarget{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692}{ |
---|
78 | virtual double \hyperlink{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692}{evallog} (const vec \&val) const } |
---|
79 | \label{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692} |
---|
80 | |
---|
81 | \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item |
---|
82 | \hypertarget{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41}{ |
---|
83 | virtual vec \hyperlink{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41}{evallog} (const mat \&Val) const } |
---|
84 | \label{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41} |
---|
85 | |
---|
86 | \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item |
---|
87 | \hypertarget{classbdm_1_1eEF_cf38af29e8e3d650c640509a52396053}{ |
---|
88 | virtual void \hyperlink{classbdm_1_1eEF_cf38af29e8e3d650c640509a52396053}{pow} (double p)} |
---|
89 | \label{classbdm_1_1eEF_cf38af29e8e3d650c640509a52396053} |
---|
90 | |
---|
91 | \begin{CompactList}\small\item\em Power of the density, used e.g. to flatten the density. \item\end{CompactList}\item |
---|
92 | \hypertarget{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{ |
---|
93 | virtual mat \hyperlink{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{sample\_\-m} (int N) const } |
---|
94 | \label{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058} |
---|
95 | |
---|
96 | \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item |
---|
97 | \hypertarget{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{ |
---|
98 | virtual vec \hyperlink{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{evallog\_\-m} (const mat \&Val) const } |
---|
99 | \label{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62} |
---|
100 | |
---|
101 | \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item |
---|
102 | \hypertarget{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{ |
---|
103 | virtual \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{condition} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } |
---|
104 | \label{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77} |
---|
105 | |
---|
106 | \begin{CompactList}\small\item\em Return conditional density on the given \hyperlink{classbdm_1_1RV}{RV}, the remaining rvs will be in conditioning. \item\end{CompactList}\item |
---|
107 | \hypertarget{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{ |
---|
108 | virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{marginal} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } |
---|
109 | \label{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1} |
---|
110 | |
---|
111 | \begin{CompactList}\small\item\em Return marginal density on the given \hyperlink{classbdm_1_1RV}{RV}, the remainig rvs are intergrated out. \item\end{CompactList}\item |
---|
112 | \hypertarget{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{ |
---|
113 | const \hyperlink{classbdm_1_1RV}{RV} \& \hyperlink{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{\_\-rv} () const } |
---|
114 | \label{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21} |
---|
115 | |
---|
116 | \begin{CompactList}\small\item\em access function, possibly dangerous! \item\end{CompactList}\item |
---|
117 | \hypertarget{classbdm_1_1epdf_62e88cbce0ce77a8692f5e15d76e805f}{ |
---|
118 | void \hyperlink{classbdm_1_1epdf_62e88cbce0ce77a8692f5e15d76e805f}{\_\-renewrv} (const \hyperlink{classbdm_1_1RV}{RV} \&in\_\-rv)} |
---|
119 | \label{classbdm_1_1epdf_62e88cbce0ce77a8692f5e15d76e805f} |
---|
120 | |
---|
121 | \begin{CompactList}\small\item\em modifier function - useful when copying epdfs \item\end{CompactList}\end{CompactItemize} |
---|
122 | \subsection*{Protected Attributes} |
---|
123 | \begin{CompactItemize} |
---|
124 | \item |
---|
125 | \hypertarget{classbdm_1_1eDirich_f25886a49b4667af61245de81c83b5d2}{ |
---|
126 | vec \hyperlink{classbdm_1_1eDirich_f25886a49b4667af61245de81c83b5d2}{beta}} |
---|
127 | \label{classbdm_1_1eDirich_f25886a49b4667af61245de81c83b5d2} |
---|
128 | |
---|
129 | \begin{CompactList}\small\item\em sufficient statistics \item\end{CompactList}\item |
---|
130 | \hypertarget{classbdm_1_1eDirich_ee9db192a6f0ab7b29c33b2a18a5e1b4}{ |
---|
131 | double \hyperlink{classbdm_1_1eDirich_ee9db192a6f0ab7b29c33b2a18a5e1b4}{gamma}} |
---|
132 | \label{classbdm_1_1eDirich_ee9db192a6f0ab7b29c33b2a18a5e1b4} |
---|
133 | |
---|
134 | \begin{CompactList}\small\item\em speedup variable \item\end{CompactList}\item |
---|
135 | \hypertarget{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{ |
---|
136 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}} |
---|
137 | \label{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8} |
---|
138 | |
---|
139 | \begin{CompactList}\small\item\em Identified of the random variable. \item\end{CompactList}\end{CompactItemize} |
---|
140 | |
---|
141 | |
---|
142 | \subsection{Detailed Description} |
---|
143 | Dirichlet posterior density. |
---|
144 | |
---|
145 | Continuous Dirichlet density of $n$-dimensional variable $x$ \[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] where $\gamma=\sum_i \beta_i$. |
---|
146 | |
---|
147 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
148 | \item |
---|
149 | \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize} |
---|