\hypertarget{classbdm_1_1eEmp}{ \section{bdm::eEmp Class Reference} \label{classbdm_1_1eEmp}\index{bdm::eEmp@{bdm::eEmp}} } {\tt \#include $<$libEF.h$>$} Inheritance diagram for bdm::eEmp::\begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=3cm]{classbdm_1_1eEmp} \end{center} \end{figure} \subsection{Detailed Description} Weighted empirical density. Used e.g. in particle filters. \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classbdm_1_1eEmp_82320074a9b0ad7e1bb33a6e885b65d7}{ void \hyperlink{classbdm_1_1eEmp_82320074a9b0ad7e1bb33a6e885b65d7}{set\_\-parameters} (const vec \&w0, const \hyperlink{classbdm_1_1epdf}{epdf} $\ast$pdf0)} \label{classbdm_1_1eEmp_82320074a9b0ad7e1bb33a6e885b65d7} \begin{CompactList}\small\item\em Set samples and weights. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_b62d802b8ef39f7c4dcbeb366c90951a}{ void \hyperlink{classbdm_1_1eEmp_b62d802b8ef39f7c4dcbeb366c90951a}{set\_\-samples} (const \hyperlink{classbdm_1_1epdf}{epdf} $\ast$pdf0)} \label{classbdm_1_1eEmp_b62d802b8ef39f7c4dcbeb366c90951a} \begin{CompactList}\small\item\em Set sample. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_dccd02eaa4c45e858a6351723686ac85}{ void \hyperlink{classbdm_1_1eEmp_dccd02eaa4c45e858a6351723686ac85}{set\_\-n} (int n0, bool copy=true)} \label{classbdm_1_1eEmp_dccd02eaa4c45e858a6351723686ac85} \begin{CompactList}\small\item\em Set sample. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_d7f83cc0415cd44ae7cc8b4bdad93aef}{ vec \& \hyperlink{classbdm_1_1eEmp_d7f83cc0415cd44ae7cc8b4bdad93aef}{\_\-w} ()} \label{classbdm_1_1eEmp_d7f83cc0415cd44ae7cc8b4bdad93aef} \begin{CompactList}\small\item\em Potentially dangerous, use with care. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_b7d7106f486e3fad38590914a693d714}{ const vec \& \hyperlink{classbdm_1_1eEmp_b7d7106f486e3fad38590914a693d714}{\_\-w} () const } \label{classbdm_1_1eEmp_b7d7106f486e3fad38590914a693d714} \begin{CompactList}\small\item\em Potentially dangerous, use with care. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_c24966b0aaeb767bc8a6b4fd60931be2}{ Array$<$ vec $>$ \& \hyperlink{classbdm_1_1eEmp_c24966b0aaeb767bc8a6b4fd60931be2}{\_\-samples} ()} \label{classbdm_1_1eEmp_c24966b0aaeb767bc8a6b4fd60931be2} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_b59af0efdb009d98ea8ebfa965e74ae2}{ const Array$<$ vec $>$ \& \hyperlink{classbdm_1_1eEmp_b59af0efdb009d98ea8ebfa965e74ae2}{\_\-samples} () const } \label{classbdm_1_1eEmp_b59af0efdb009d98ea8ebfa965e74ae2} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_f06ce255de5dbb2313f52ee51f82ba3d}{ ivec \hyperlink{classbdm_1_1eEmp_f06ce255de5dbb2313f52ee51f82ba3d}{resample} (RESAMPLING\_\-METHOD method=SYSTEMATIC)} \label{classbdm_1_1eEmp_f06ce255de5dbb2313f52ee51f82ba3d} \begin{CompactList}\small\item\em Function performs resampling, i.e. removal of low-weight samples and duplication of high-weight samples such that the new samples represent the same density. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_97f1e07b5ae6eebc91c7365f0f88d270}{ vec \hyperlink{classbdm_1_1eEmp_97f1e07b5ae6eebc91c7365f0f88d270}{sample} () const } \label{classbdm_1_1eEmp_97f1e07b5ae6eebc91c7365f0f88d270} \begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_01654c014d3aa068f8d4ecba4be86d09}{ double \hyperlink{classbdm_1_1eEmp_01654c014d3aa068f8d4ecba4be86d09}{evallog} (const vec \&val) const } \label{classbdm_1_1eEmp_01654c014d3aa068f8d4ecba4be86d09} \begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_bbfcb4f868c7381298c281a256d8c4b9}{ vec \hyperlink{classbdm_1_1eEmp_bbfcb4f868c7381298c281a256d8c4b9}{mean} () const } \label{classbdm_1_1eEmp_bbfcb4f868c7381298c281a256d8c4b9} \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_05e9ebf467ede737cb6a3621d7fd3c87}{ vec \hyperlink{classbdm_1_1eEmp_05e9ebf467ede737cb6a3621d7fd3c87}{variance} () const } \label{classbdm_1_1eEmp_05e9ebf467ede737cb6a3621d7fd3c87} \begin{CompactList}\small\item\em return expected variance (not covariance!) \item\end{CompactList}\end{CompactItemize} \begin{Indent}{\bf Constructors}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1eEmp_dc232a73b38c9f9688bc4f981eaa0312}{ \textbf{eEmp} ()} \label{classbdm_1_1eEmp_dc232a73b38c9f9688bc4f981eaa0312} \item \hypertarget{classbdm_1_1eEmp_a3daf6363455af099921715e1233c076}{ \textbf{eEmp} (const \hyperlink{classbdm_1_1eEmp}{eEmp} \&e)} \label{classbdm_1_1eEmp_a3daf6363455af099921715e1233c076} \end{CompactItemize} \end{Indent} \begin{Indent}{\bf Constructors}\par {\em Construction of each \hyperlink{classbdm_1_1epdf}{epdf} should support two types of constructors: \begin{itemize} \item empty constructor, \item copy constructor,\end{itemize} The following constructors should be supported for convenience: \begin{itemize} \item constructor followed by calling {\tt \hyperlink{classbdm_1_1eEmp_82320074a9b0ad7e1bb33a6e885b65d7}{set\_\-parameters()}} \item constructor accepting random variables calling {\tt \hyperlink{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff}{set\_\-rv()}} \end{itemize} All internal data structures are constructed as empty. Their values (including sizes) will be set by method {\tt \hyperlink{classbdm_1_1eEmp_82320074a9b0ad7e1bb33a6e885b65d7}{set\_\-parameters()}}. This way references can be initialized in constructors. }\begin{CompactItemize} \item \hypertarget{classbdm_1_1epdf_840de94aa33cf4f2ebd2427f45a165d8}{ void \textbf{set\_\-parameters} (int dim0)} \label{classbdm_1_1epdf_840de94aa33cf4f2ebd2427f45a165d8} \end{CompactItemize} \end{Indent} \begin{Indent}{\bf Matematical Operations}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{ virtual mat \hyperlink{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{sample\_\-m} (int N) const } \label{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058} \begin{CompactList}\small\item\em Returns N samples, $ [x_1 , x_2 , \ldots \ $ from density $ f_x(rv)$. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{ virtual vec \hyperlink{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{evallog\_\-m} (const mat \&Val) const } \label{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62} \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{ virtual \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{condition} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } \label{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77} \begin{CompactList}\small\item\em Return conditional density on the given \hyperlink{classbdm_1_1RV}{RV}, the remaining rvs will be in conditioning. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{ virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{marginal} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } \label{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1} \begin{CompactList}\small\item\em Return marginal density on the given \hyperlink{classbdm_1_1RV}{RV}, the remainig rvs are intergrated out. \item\end{CompactList}\end{CompactItemize} \end{Indent} \begin{Indent}{\bf Connection to other classes}\par {\em Description of the random quantity via attribute {\tt rv} is optional. For operations such as sampling {\tt rv} does not need to be set. However, for {\tt marginalization} and {\tt conditioning} {\tt rv} has to be set. NB: }\begin{CompactItemize} \item \hypertarget{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff}{ void \hyperlink{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff}{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} \label{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff} \begin{CompactList}\small\item\em Name its rv. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9}{ bool \hyperlink{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9}{isnamed} () const } \label{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9} \begin{CompactList}\small\item\em True if rv is assigned. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{ const \hyperlink{classbdm_1_1RV}{RV} \& \hyperlink{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{\_\-rv} () const } \label{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21} \begin{CompactList}\small\item\em Return name (fails when isnamed is false). \item\end{CompactList}\end{CompactItemize} \end{Indent} \begin{Indent}{\bf Access to attributes}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1epdf_7083a65f7b7a0d0d13b2c516bd2ec29c}{ int \hyperlink{classbdm_1_1epdf_7083a65f7b7a0d0d13b2c516bd2ec29c}{dimension} () const } \label{classbdm_1_1epdf_7083a65f7b7a0d0d13b2c516bd2ec29c} \begin{CompactList}\small\item\em Size of the random variable. \item\end{CompactList}\end{CompactItemize} \end{Indent} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classbdm_1_1eEmp_9798006271ca77629855113f1283a031}{ int \hyperlink{classbdm_1_1eEmp_9798006271ca77629855113f1283a031}{n}} \label{classbdm_1_1eEmp_9798006271ca77629855113f1283a031} \begin{CompactList}\small\item\em Number of particles. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_9d39241aab7c4bbeb07c6d516421c67d}{ vec \hyperlink{classbdm_1_1eEmp_9d39241aab7c4bbeb07c6d516421c67d}{w}} \label{classbdm_1_1eEmp_9d39241aab7c4bbeb07c6d516421c67d} \begin{CompactList}\small\item\em Sample weights $w$. \item\end{CompactList}\item \hypertarget{classbdm_1_1eEmp_73d819553a0f268b055a087d2d4486f3}{ Array$<$ vec $>$ \hyperlink{classbdm_1_1eEmp_73d819553a0f268b055a087d2d4486f3}{samples}} \label{classbdm_1_1eEmp_73d819553a0f268b055a087d2d4486f3} \begin{CompactList}\small\item\em Samples $x^{(i)}, i=1..n$. \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce}{ int \hyperlink{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce}{dim}} \label{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce} \begin{CompactList}\small\item\em dimension of the random variable \item\end{CompactList}\item \hypertarget{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}} \label{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8} \begin{CompactList}\small\item\em Description of the random variable. \item\end{CompactList}\end{CompactItemize} The documentation for this class was generated from the following files:\begin{CompactItemize} \item \hyperlink{libEF_8h}{libEF.h}\item libEF.cpp\end{CompactItemize}