1 | \hypertarget{classbdm_1_1egiw}{ |
---|
2 | \section{bdm::egiw Class Reference} |
---|
3 | \label{classbdm_1_1egiw}\index{bdm::egiw@{bdm::egiw}} |
---|
4 | } |
---|
5 | {\tt \#include $<$libEF.h$>$} |
---|
6 | |
---|
7 | Inheritance diagram for bdm::egiw:\nopagebreak |
---|
8 | \begin{figure}[H] |
---|
9 | \begin{center} |
---|
10 | \leavevmode |
---|
11 | \includegraphics[width=64pt]{classbdm_1_1egiw__inherit__graph} |
---|
12 | \end{center} |
---|
13 | \end{figure} |
---|
14 | |
---|
15 | |
---|
16 | \subsection{Detailed Description} |
---|
17 | Gauss-inverse-Wishart density stored in LD form. |
---|
18 | |
---|
19 | For $p$-variate densities, given rv.count() should be $p\times$ V.rows(). \subsection*{Public Member Functions} |
---|
20 | \begin{CompactItemize} |
---|
21 | \item |
---|
22 | \hypertarget{classbdm_1_1egiw_920f21548b7a3723923dd108fe514c61}{ |
---|
23 | vec \hyperlink{classbdm_1_1egiw_920f21548b7a3723923dd108fe514c61}{sample} () const } |
---|
24 | \label{classbdm_1_1egiw_920f21548b7a3723923dd108fe514c61} |
---|
25 | |
---|
26 | \begin{CompactList}\small\item\em Returns a sample, $ x $ from density $ f_x()$. \item\end{CompactList}\item |
---|
27 | \hypertarget{classbdm_1_1egiw_df70c05f918c3a6f86d60f10c1fd6ba2}{ |
---|
28 | vec \hyperlink{classbdm_1_1egiw_df70c05f918c3a6f86d60f10c1fd6ba2}{mean} () const } |
---|
29 | \label{classbdm_1_1egiw_df70c05f918c3a6f86d60f10c1fd6ba2} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item |
---|
32 | \hypertarget{classbdm_1_1egiw_c1ecc406613cc2341225dc10c3d3b46a}{ |
---|
33 | vec \hyperlink{classbdm_1_1egiw_c1ecc406613cc2341225dc10c3d3b46a}{variance} () const } |
---|
34 | \label{classbdm_1_1egiw_c1ecc406613cc2341225dc10c3d3b46a} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em return expected variance (not covariance!) \item\end{CompactList}\item |
---|
37 | \hypertarget{classbdm_1_1egiw_d2075aa2306648b3e4fe40bb86628d5c}{ |
---|
38 | void \textbf{mean\_\-mat} (mat \&M, mat \&R) const } |
---|
39 | \label{classbdm_1_1egiw_d2075aa2306648b3e4fe40bb86628d5c} |
---|
40 | |
---|
41 | \item |
---|
42 | \hypertarget{classbdm_1_1egiw_bfb8e7c619b34ad804a73bff71742b5e}{ |
---|
43 | double \hyperlink{classbdm_1_1egiw_bfb8e7c619b34ad804a73bff71742b5e}{evallog\_\-nn} (const vec \&val) const } |
---|
44 | \label{classbdm_1_1egiw_bfb8e7c619b34ad804a73bff71742b5e} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em In this instance, val= \mbox{[}theta, r\mbox{]}. For multivariate instances, it is stored columnwise val = \mbox{[}theta\_\-1 theta\_\-2 ... r\_\-1 r\_\-2 \mbox{]}. \item\end{CompactList}\item |
---|
47 | \hypertarget{classbdm_1_1egiw_41d72ba7b2abc8a9a4209ffa98ed5633}{ |
---|
48 | double \hyperlink{classbdm_1_1egiw_41d72ba7b2abc8a9a4209ffa98ed5633}{lognc} () const } |
---|
49 | \label{classbdm_1_1egiw_41d72ba7b2abc8a9a4209ffa98ed5633} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em logarithm of the normalizing constant, $\mathcal{I}$ \item\end{CompactList}\item |
---|
52 | \hypertarget{classbdm_1_1egiw_8e610e95401a11baf34f65e16ecd87be}{ |
---|
53 | void \hyperlink{classbdm_1_1egiw_8e610e95401a11baf34f65e16ecd87be}{pow} (double p)} |
---|
54 | \label{classbdm_1_1egiw_8e610e95401a11baf34f65e16ecd87be} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em Power of the density, used e.g. to flatten the density. \item\end{CompactList}\item |
---|
57 | \hypertarget{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a}{ |
---|
58 | virtual void \hyperlink{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a}{dupdate} (mat \&v)} |
---|
59 | \label{classbdm_1_1eEF_deef7d6273ba4d5a5cf0bbd91ec7277a} |
---|
60 | |
---|
61 | \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item |
---|
62 | \hypertarget{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692}{ |
---|
63 | virtual double \hyperlink{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692}{evallog} (const vec \&val) const } |
---|
64 | \label{classbdm_1_1eEF_a36d06ecdd6f4c79dc122510eaccc692} |
---|
65 | |
---|
66 | \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item |
---|
67 | \hypertarget{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41}{ |
---|
68 | virtual vec \hyperlink{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41}{evallog} (const mat \&Val) const } |
---|
69 | \label{classbdm_1_1eEF_79a7c8ea8c02e45d410bd1d7ffd72b41} |
---|
70 | |
---|
71 | \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\end{CompactItemize} |
---|
72 | \begin{Indent}{\bf Constructors}\par |
---|
73 | \begin{CompactItemize} |
---|
74 | \item |
---|
75 | \hypertarget{classbdm_1_1egiw_50149cf136c9120b4fff71c117f0bb2e}{ |
---|
76 | \textbf{egiw} ()} |
---|
77 | \label{classbdm_1_1egiw_50149cf136c9120b4fff71c117f0bb2e} |
---|
78 | |
---|
79 | \item |
---|
80 | \hypertarget{classbdm_1_1egiw_79037e048e717a076f342eb1d276870e}{ |
---|
81 | \textbf{egiw} (int dimx0, \hyperlink{classldmat}{ldmat} V0, double nu0=-1.0)} |
---|
82 | \label{classbdm_1_1egiw_79037e048e717a076f342eb1d276870e} |
---|
83 | |
---|
84 | \item |
---|
85 | \hypertarget{classbdm_1_1egiw_40b04f8ef133d089c4be2c7983e18b5c}{ |
---|
86 | void \textbf{set\_\-parameters} (int dimx0, \hyperlink{classldmat}{ldmat} V0, double nu0=-1.0)} |
---|
87 | \label{classbdm_1_1egiw_40b04f8ef133d089c4be2c7983e18b5c} |
---|
88 | |
---|
89 | \end{CompactItemize} |
---|
90 | \end{Indent} |
---|
91 | \begin{Indent}{\bf Access attributes}\par |
---|
92 | \begin{CompactItemize} |
---|
93 | \item |
---|
94 | \hypertarget{classbdm_1_1egiw_15792f3112e5cf67d572f491b09324c8}{ |
---|
95 | \hyperlink{classldmat}{ldmat} \& \textbf{\_\-V} ()} |
---|
96 | \label{classbdm_1_1egiw_15792f3112e5cf67d572f491b09324c8} |
---|
97 | |
---|
98 | \item |
---|
99 | \hypertarget{classbdm_1_1egiw_ad9c539a80a552e837245ddcebcbbba4}{ |
---|
100 | const \hyperlink{classldmat}{ldmat} \& \textbf{\_\-V} () const } |
---|
101 | \label{classbdm_1_1egiw_ad9c539a80a552e837245ddcebcbbba4} |
---|
102 | |
---|
103 | \item |
---|
104 | \hypertarget{classbdm_1_1egiw_a025ee710274ca142dd0ae978735ad4a}{ |
---|
105 | double \& \textbf{\_\-nu} ()} |
---|
106 | \label{classbdm_1_1egiw_a025ee710274ca142dd0ae978735ad4a} |
---|
107 | |
---|
108 | \item |
---|
109 | \hypertarget{classbdm_1_1egiw_cf3b2bcb158c15c24788bba90e4154e4}{ |
---|
110 | const double \& \textbf{\_\-nu} () const } |
---|
111 | \label{classbdm_1_1egiw_cf3b2bcb158c15c24788bba90e4154e4} |
---|
112 | |
---|
113 | \end{CompactItemize} |
---|
114 | \end{Indent} |
---|
115 | \begin{Indent}{\bf Matematical Operations}\par |
---|
116 | \begin{CompactItemize} |
---|
117 | \item |
---|
118 | \hypertarget{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{ |
---|
119 | virtual mat \hyperlink{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058}{sample\_\-m} (int N) const } |
---|
120 | \label{classbdm_1_1epdf_b4cf45fd83cc7573ede9fe1215256058} |
---|
121 | |
---|
122 | \begin{CompactList}\small\item\em Returns N samples, $ [x_1 , x_2 , \ldots \ $ from density $ f_x(rv)$. \item\end{CompactList}\item |
---|
123 | \hypertarget{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{ |
---|
124 | virtual vec \hyperlink{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62}{evallog\_\-m} (const mat \&Val) const } |
---|
125 | \label{classbdm_1_1epdf_34956d4dd3176eeb5937cf48a1546b62} |
---|
126 | |
---|
127 | \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item |
---|
128 | \hypertarget{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{ |
---|
129 | virtual \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ \hyperlink{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77}{condition} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } |
---|
130 | \label{classbdm_1_1epdf_e584eac5579c1b6384947ecf66166c77} |
---|
131 | |
---|
132 | \begin{CompactList}\small\item\em Return conditional density on the given \hyperlink{classbdm_1_1RV}{RV}, the remaining rvs will be in conditioning. \item\end{CompactList}\item |
---|
133 | \hypertarget{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{ |
---|
134 | virtual \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1}{marginal} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}) const } |
---|
135 | \label{classbdm_1_1epdf_3fb2ece54f720b62ad325e61214fa0a1} |
---|
136 | |
---|
137 | \begin{CompactList}\small\item\em Return marginal density on the given \hyperlink{classbdm_1_1RV}{RV}, the remainig rvs are intergrated out. \item\end{CompactList}\end{CompactItemize} |
---|
138 | \end{Indent} |
---|
139 | \begin{Indent}{\bf Connection to other classes}\par |
---|
140 | {\em Description of the random quantity via attribute {\tt rv} is optional. For operations such as sampling {\tt rv} does not need to be set. However, for {\tt marginalization} and {\tt conditioning} {\tt rv} has to be set. NB: }\begin{CompactItemize} |
---|
141 | \item |
---|
142 | \hypertarget{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff}{ |
---|
143 | void \hyperlink{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff}{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} |
---|
144 | \label{classbdm_1_1epdf_f423e28448dbb69ef4905295ec8de8ff} |
---|
145 | |
---|
146 | \begin{CompactList}\small\item\em Name its rv. \item\end{CompactList}\item |
---|
147 | \hypertarget{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9}{ |
---|
148 | bool \hyperlink{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9}{isnamed} () const } |
---|
149 | \label{classbdm_1_1epdf_c4b863ff84c7a4882fb3ad18556027f9} |
---|
150 | |
---|
151 | \begin{CompactList}\small\item\em True if rv is assigned. \item\end{CompactList}\item |
---|
152 | \hypertarget{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{ |
---|
153 | const \hyperlink{classbdm_1_1RV}{RV} \& \hyperlink{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21}{\_\-rv} () const } |
---|
154 | \label{classbdm_1_1epdf_a4ab378d5e004c3ff3e2d4e64f7bba21} |
---|
155 | |
---|
156 | \begin{CompactList}\small\item\em Return name (fails when isnamed is false). \item\end{CompactList}\end{CompactItemize} |
---|
157 | \end{Indent} |
---|
158 | \begin{Indent}{\bf Access to attributes}\par |
---|
159 | \begin{CompactItemize} |
---|
160 | \item |
---|
161 | \hypertarget{classbdm_1_1epdf_46dfe100cd621716ee5c7ee25a20f24b}{ |
---|
162 | bool \hyperlink{classbdm_1_1epdf_46dfe100cd621716ee5c7ee25a20f24b}{dimension} () const } |
---|
163 | \label{classbdm_1_1epdf_46dfe100cd621716ee5c7ee25a20f24b} |
---|
164 | |
---|
165 | \begin{CompactList}\small\item\em Size of the random variable. \item\end{CompactList}\end{CompactItemize} |
---|
166 | \end{Indent} |
---|
167 | \subsection*{Protected Attributes} |
---|
168 | \begin{CompactItemize} |
---|
169 | \item |
---|
170 | \hypertarget{classbdm_1_1egiw_ae56852845c6af176fd9017dbebbbd52}{ |
---|
171 | \hyperlink{classldmat}{ldmat} \hyperlink{classbdm_1_1egiw_ae56852845c6af176fd9017dbebbbd52}{V}} |
---|
172 | \label{classbdm_1_1egiw_ae56852845c6af176fd9017dbebbbd52} |
---|
173 | |
---|
174 | \begin{CompactList}\small\item\em Extended information matrix of sufficient statistics. \item\end{CompactList}\item |
---|
175 | \hypertarget{classbdm_1_1egiw_447eacf19d4f4083872686f044814dc4}{ |
---|
176 | double \hyperlink{classbdm_1_1egiw_447eacf19d4f4083872686f044814dc4}{nu}} |
---|
177 | \label{classbdm_1_1egiw_447eacf19d4f4083872686f044814dc4} |
---|
178 | |
---|
179 | \begin{CompactList}\small\item\em Number of data records (degrees of freedom) of sufficient statistics. \item\end{CompactList}\item |
---|
180 | \hypertarget{classbdm_1_1egiw_23e4d78bea7e98840f3da30e76a2b57a}{ |
---|
181 | int \hyperlink{classbdm_1_1egiw_23e4d78bea7e98840f3da30e76a2b57a}{dimx}} |
---|
182 | \label{classbdm_1_1egiw_23e4d78bea7e98840f3da30e76a2b57a} |
---|
183 | |
---|
184 | \begin{CompactList}\small\item\em Dimension of the output. \item\end{CompactList}\item |
---|
185 | \hypertarget{classbdm_1_1egiw_322414c32d9a21a006a5aab0311f64fd}{ |
---|
186 | int \hyperlink{classbdm_1_1egiw_322414c32d9a21a006a5aab0311f64fd}{nPsi}} |
---|
187 | \label{classbdm_1_1egiw_322414c32d9a21a006a5aab0311f64fd} |
---|
188 | |
---|
189 | \begin{CompactList}\small\item\em Dimension of the regressor. \item\end{CompactList}\item |
---|
190 | \hypertarget{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce}{ |
---|
191 | int \hyperlink{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce}{dim}} |
---|
192 | \label{classbdm_1_1epdf_16adac20ec7fe07e1ea0b27d917788ce} |
---|
193 | |
---|
194 | \begin{CompactList}\small\item\em dimension of the random variable \item\end{CompactList}\item |
---|
195 | \hypertarget{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{ |
---|
196 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8}{rv}} |
---|
197 | \label{classbdm_1_1epdf_62c5b8ff71d9ebe6cd58d3c342eb1dc8} |
---|
198 | |
---|
199 | \begin{CompactList}\small\item\em Description of the random variable. \item\end{CompactList}\end{CompactItemize} |
---|
200 | |
---|
201 | |
---|
202 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
203 | \item |
---|
204 | \hyperlink{libEF_8h}{libEF.h}\item |
---|
205 | libEF.cpp\end{CompactItemize} |
---|