root/doc/latex/classbdm_1_1mgamma.tex @ 271

Revision 271, 8.8 kB (checked in by smidl, 16 years ago)

Next major revision

Line 
1\hypertarget{classbdm_1_1mgamma}{
2\section{bdm::mgamma Class Reference}
3\label{classbdm_1_1mgamma}\index{bdm::mgamma@{bdm::mgamma}}
4}
5{\tt \#include $<$libEF.h$>$}
6
7Inheritance diagram for bdm::mgamma::\begin{figure}[H]
8\begin{center}
9\leavevmode
10\includegraphics[height=5cm]{classbdm_1_1mgamma}
11\end{center}
12\end{figure}
13
14
15\subsection{Detailed Description}
16Gamma random walk.
17
18Mean value, $\mu$, of this density is given by {\tt rvc} . Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
19
20The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions}
21\begin{CompactItemize}
22\item 
23\hypertarget{classbdm_1_1mgamma_1a9dc8661e5b214a8185d6e6b9956eb1}{
24\hyperlink{classbdm_1_1mgamma_1a9dc8661e5b214a8185d6e6b9956eb1}{mgamma} ()}
25\label{classbdm_1_1mgamma_1a9dc8661e5b214a8185d6e6b9956eb1}
26
27\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
28\hypertarget{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{
29void \hyperlink{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}, const vec \&beta0)}
30\label{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}
31
32\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
33\hypertarget{classbdm_1_1mgamma_8996500f1885e39cde30221b20900bff}{
34void \hyperlink{classbdm_1_1mgamma_8996500f1885e39cde30221b20900bff}{condition} (const vec \&val)}
35\label{classbdm_1_1mgamma_8996500f1885e39cde30221b20900bff}
36
37\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\end{CompactItemize}
38\begin{Indent}{\bf Matematical operations}\par
39\begin{CompactItemize}
40\item 
41virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
42\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
43virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N)
44\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
45\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
46virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
47\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
48
49\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
50\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
51virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
52\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
53
54\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize}
55\end{Indent}
56\begin{Indent}{\bf Access to attributes}\par
57\begin{CompactItemize}
58\item 
59\hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{
60\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()}
61\label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}
62
63\item 
64\hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{
65\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()}
66\label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}
67
68\item 
69\hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{
70int \textbf{dimension} ()}
71\label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}
72
73\item 
74\hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{
75int \textbf{dimensionc} ()}
76\label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}
77
78\item 
79\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
80\hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()}
81\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
82
83\item 
84\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
85\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()}
86\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
87
88\end{CompactItemize}
89\end{Indent}
90\begin{Indent}{\bf Connection to other objects}\par
91\begin{CompactItemize}
92\item 
93\hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{
94void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)}
95\label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}
96
97\item 
98\hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{
99void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)}
100\label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}
101
102\item 
103\hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{
104bool \textbf{isnamed} ()}
105\label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}
106
107\end{CompactItemize}
108\end{Indent}
109\subsection*{Protected Attributes}
110\begin{CompactItemize}
111\item 
112\hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{
113\hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}}
114\label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}
115
116\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
117\hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{
118double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}}
119\label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}
120
121\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
122\hypertarget{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{
123vec \& \hyperlink{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{\_\-beta}}
124\label{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}
125
126\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
127\hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{
128int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}}
129\label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}
130
131\begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item 
132\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
133\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
134\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
135
136\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
137\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
138\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
139\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
140
141\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
142
143
144\subsection{Member Function Documentation}
145\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
146\index{bdm::mgamma@{bdm::mgamma}!samplecond@{samplecond}}
147\index{samplecond@{samplecond}!bdm::mgamma@{bdm::mgamma}}
148\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
149\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
150
151
152Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
153
154\begin{Desc}
155\item[Parameters:]
156\begin{description}
157\item[{\em cond}]is numeric value of {\tt rv} \end{description}
158\end{Desc}
159
160
161Reimplemented in \hyperlink{classbdm_1_1mprod_ee715a8013acf9892f6cb489db595555}{bdm::mprod}.
162
163References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
164
165Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{
166\index{bdm::mgamma@{bdm::mgamma}!samplecond\_\-m@{samplecond\_\-m}}
167\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma@{bdm::mgamma}}
168\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
169\label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}
170
171
172Returns.
173
174\begin{Desc}
175\item[Parameters:]
176\begin{description}
177\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
178\end{Desc}
179
180
181References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
182
183The documentation for this class was generated from the following files:\begin{CompactItemize}
184\item 
185\hyperlink{libEF_8h}{libEF.h}\item 
186libEF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.