| [261] | 1 | \hypertarget{classbdm_1_1mgamma__fix}{ | 
|---|
|  | 2 | \section{bdm::mgamma\_\-fix Class Reference} | 
|---|
|  | 3 | \label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}} | 
|---|
|  | 4 | } | 
|---|
|  | 5 | Gamma random walk around a fixed point. | 
|---|
|  | 6 |  | 
|---|
|  | 7 |  | 
|---|
|  | 8 | {\tt \#include $<$libEF.h$>$} | 
|---|
|  | 9 |  | 
|---|
|  | 10 | Inheritance diagram for bdm::mgamma\_\-fix:\nopagebreak | 
|---|
|  | 11 | \begin{figure}[H] | 
|---|
|  | 12 | \begin{center} | 
|---|
|  | 13 | \leavevmode | 
|---|
|  | 14 | \includegraphics[width=75pt]{classbdm_1_1mgamma__fix__inherit__graph} | 
|---|
|  | 15 | \end{center} | 
|---|
|  | 16 | \end{figure} | 
|---|
|  | 17 | Collaboration diagram for bdm::mgamma\_\-fix:\nopagebreak | 
|---|
|  | 18 | \begin{figure}[H] | 
|---|
|  | 19 | \begin{center} | 
|---|
|  | 20 | \leavevmode | 
|---|
|  | 21 | \includegraphics[height=400pt]{classbdm_1_1mgamma__fix__coll__graph} | 
|---|
|  | 22 | \end{center} | 
|---|
|  | 23 | \end{figure} | 
|---|
|  | 24 | \subsection*{Public Member Functions} | 
|---|
|  | 25 | \begin{CompactItemize} | 
|---|
|  | 26 | \item | 
|---|
|  | 27 | \hypertarget{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614}{ | 
|---|
|  | 28 | \hyperlink{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614}{mgamma\_\-fix} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})} | 
|---|
|  | 29 | \label{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614} | 
|---|
|  | 30 |  | 
|---|
|  | 31 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item | 
|---|
|  | 32 | \hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{ | 
|---|
|  | 33 | void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)} | 
|---|
|  | 34 | \label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2} | 
|---|
|  | 35 |  | 
|---|
|  | 36 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item | 
|---|
|  | 37 | \hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{ | 
|---|
|  | 38 | void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)} | 
|---|
|  | 39 | \label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7} | 
|---|
|  | 40 |  | 
|---|
|  | 41 | \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item | 
|---|
|  | 42 | \hypertarget{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{ | 
|---|
|  | 43 | void \hyperlink{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k})} | 
|---|
|  | 44 | \label{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d} | 
|---|
|  | 45 |  | 
|---|
|  | 46 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item | 
|---|
| [269] | 47 | virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) | 
|---|
| [261] | 48 | \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item | 
|---|
|  | 49 | virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) | 
|---|
|  | 50 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item | 
|---|
|  | 51 | \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ | 
|---|
|  | 52 | virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} | 
|---|
|  | 53 | \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} | 
|---|
|  | 54 |  | 
|---|
|  | 55 | \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item | 
|---|
|  | 56 | \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ | 
|---|
|  | 57 | virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} | 
|---|
|  | 58 | \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} | 
|---|
|  | 59 |  | 
|---|
|  | 60 | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item | 
|---|
|  | 61 | \hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{ | 
|---|
|  | 62 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const } | 
|---|
|  | 63 | \label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8} | 
|---|
|  | 64 |  | 
|---|
|  | 65 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item | 
|---|
|  | 66 | \hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{ | 
|---|
|  | 67 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const } | 
|---|
|  | 68 | \label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151} | 
|---|
|  | 69 |  | 
|---|
|  | 70 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item | 
|---|
|  | 71 | \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ | 
|---|
|  | 72 | \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()} | 
|---|
|  | 73 | \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} | 
|---|
|  | 74 |  | 
|---|
|  | 75 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item | 
|---|
|  | 76 | \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ | 
|---|
|  | 77 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()} | 
|---|
|  | 78 | \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} | 
|---|
|  | 79 |  | 
|---|
|  | 80 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} | 
|---|
|  | 81 | \subsection*{Protected Attributes} | 
|---|
|  | 82 | \begin{CompactItemize} | 
|---|
|  | 83 | \item | 
|---|
|  | 84 | \hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{ | 
|---|
|  | 85 | double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}} | 
|---|
|  | 86 | \label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa} | 
|---|
|  | 87 |  | 
|---|
|  | 88 | \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item | 
|---|
|  | 89 | \hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{ | 
|---|
|  | 90 | vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}} | 
|---|
|  | 91 | \label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2} | 
|---|
|  | 92 |  | 
|---|
|  | 93 | \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item | 
|---|
|  | 94 | \hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{ | 
|---|
|  | 95 | \hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}} | 
|---|
|  | 96 | \label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438} | 
|---|
|  | 97 |  | 
|---|
|  | 98 | \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item | 
|---|
|  | 99 | \hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{ | 
|---|
|  | 100 | double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}} | 
|---|
|  | 101 | \label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09} | 
|---|
|  | 102 |  | 
|---|
|  | 103 | \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item | 
|---|
|  | 104 | \hypertarget{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343}{ | 
|---|
|  | 105 | vec $\ast$ \hyperlink{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343}{\_\-beta}} | 
|---|
|  | 106 | \label{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343} | 
|---|
|  | 107 |  | 
|---|
|  | 108 | \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item | 
|---|
|  | 109 | \hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{ | 
|---|
|  | 110 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}} | 
|---|
|  | 111 | \label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51} | 
|---|
|  | 112 |  | 
|---|
|  | 113 | \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item | 
|---|
|  | 114 | \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ | 
|---|
|  | 115 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} | 
|---|
|  | 116 | \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} | 
|---|
|  | 117 |  | 
|---|
|  | 118 | \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item | 
|---|
|  | 119 | \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ | 
|---|
|  | 120 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} | 
|---|
|  | 121 | \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} | 
|---|
|  | 122 |  | 
|---|
|  | 123 | \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} | 
|---|
|  | 124 |  | 
|---|
|  | 125 |  | 
|---|
|  | 126 | \subsection{Detailed Description} | 
|---|
|  | 127 | Gamma random walk around a fixed point. | 
|---|
|  | 128 |  | 
|---|
|  | 129 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] | 
|---|
|  | 130 |  | 
|---|
|  | 131 | Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. | 
|---|
|  | 132 |  | 
|---|
|  | 133 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. | 
|---|
|  | 134 |  | 
|---|
|  | 135 | \subsection{Member Function Documentation} | 
|---|
| [269] | 136 | \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ | 
|---|
| [261] | 137 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}} | 
|---|
|  | 138 | \index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} | 
|---|
| [269] | 139 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} | 
|---|
|  | 140 | \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} | 
|---|
| [261] | 141 |  | 
|---|
|  | 142 |  | 
|---|
|  | 143 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. | 
|---|
|  | 144 |  | 
|---|
|  | 145 | \begin{Desc} | 
|---|
|  | 146 | \item[Parameters:] | 
|---|
|  | 147 | \begin{description} | 
|---|
| [269] | 148 | \item[{\em cond}]is numeric value of {\tt rv} \end{description} | 
|---|
| [261] | 149 | \end{Desc} | 
|---|
|  | 150 |  | 
|---|
|  | 151 |  | 
|---|
| [269] | 152 | References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). | 
|---|
| [261] | 153 |  | 
|---|
|  | 154 | Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{ | 
|---|
|  | 155 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} | 
|---|
|  | 156 | \index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} | 
|---|
|  | 157 | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} | 
|---|
|  | 158 | \label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652} | 
|---|
|  | 159 |  | 
|---|
|  | 160 |  | 
|---|
|  | 161 | Returns. | 
|---|
|  | 162 |  | 
|---|
|  | 163 | \begin{Desc} | 
|---|
|  | 164 | \item[Parameters:] | 
|---|
|  | 165 | \begin{description} | 
|---|
|  | 166 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} | 
|---|
|  | 167 | \end{Desc} | 
|---|
|  | 168 |  | 
|---|
|  | 169 |  | 
|---|
|  | 170 | References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample(). | 
|---|
|  | 171 |  | 
|---|
|  | 172 | The documentation for this class was generated from the following file:\begin{CompactItemize} | 
|---|
|  | 173 | \item | 
|---|
|  | 174 | \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize} | 
|---|