\hypertarget{classbdm_1_1mgamma__fix}{ \section{bdm::mgamma\_\-fix Class Reference} \label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}} } {\tt \#include $<$libEF.h$>$} Inheritance diagram for bdm::mgamma\_\-fix::\begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=5cm]{classbdm_1_1mgamma__fix} \end{center} \end{figure} \subsection{Detailed Description} Gamma random walk around a fixed point. Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{ \hyperlink{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{mgamma\_\-fix} ()} \label{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d} \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{ void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)} \label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{ void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)} \label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7} \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{ void \hyperlink{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}, const vec \&beta0)} \label{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize} \begin{Indent}{\bf Matematical operations}\par \begin{CompactItemize} \item virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N) \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize} \end{Indent} \begin{Indent}{\bf Access to attributes}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{ \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()} \label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10} \item \hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{ \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()} \label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245} \item \hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{ int \textbf{dimension} ()} \label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed} \item \hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{ int \textbf{dimensionc} ()} \label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8} \item \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ \hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()} \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} \item \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()} \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} \end{CompactItemize} \end{Indent} \begin{Indent}{\bf Connection to other objects}\par \begin{CompactItemize} \item \hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{ void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)} \label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401} \item \hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{ void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} \label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75} \item \hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{ bool \textbf{isnamed} ()} \label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045} \end{CompactItemize} \end{Indent} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{ double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}} \label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa} \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{ vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}} \label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2} \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{ \hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}} \label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438} \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{ double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}} \label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09} \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item \hypertarget{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{ vec \& \hyperlink{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{\_\-beta}} \label{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312} \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{ int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}} \label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6} \begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} \subsection{Member Function Documentation} \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}} \index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em cond}]is numeric value of {\tt rv} \end{description} \end{Desc} Reimplemented in \hyperlink{classbdm_1_1mprod_ee715a8013acf9892f6cb489db595555}{bdm::mprod}. References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{ \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} \index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005} Returns. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample(). The documentation for this class was generated from the following file:\begin{CompactItemize} \item \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}