1 | \hypertarget{classbdm_1_1mgamma__fix}{ |
---|
2 | \section{bdm::mgamma\_\-fix Class Reference} |
---|
3 | \label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}} |
---|
4 | } |
---|
5 | Gamma random walk around a fixed point. |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$libEF.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for bdm::mgamma\_\-fix:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=75pt]{classbdm_1_1mgamma__fix__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for bdm::mgamma\_\-fix:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[height=400pt]{classbdm_1_1mgamma__fix__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614}{ |
---|
28 | \hyperlink{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614}{mgamma\_\-fix} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})} |
---|
29 | \label{classbdm_1_1mgamma__fix_c73571f45ab2926e5a7fb9c3791b5614} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
32 | \hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{ |
---|
33 | void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)} |
---|
34 | \label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
---|
37 | \hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{ |
---|
38 | void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)} |
---|
39 | \label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item |
---|
42 | \hypertarget{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{ |
---|
43 | void \hyperlink{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k})} |
---|
44 | \label{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
---|
47 | virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) |
---|
48 | \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item |
---|
49 | virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) |
---|
50 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item |
---|
51 | \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ |
---|
52 | virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} |
---|
53 | \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} |
---|
54 | |
---|
55 | \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item |
---|
56 | \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ |
---|
57 | virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} |
---|
58 | \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} |
---|
59 | |
---|
60 | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item |
---|
61 | \hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{ |
---|
62 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const } |
---|
63 | \label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8} |
---|
64 | |
---|
65 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
66 | \hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{ |
---|
67 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const } |
---|
68 | \label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151} |
---|
69 | |
---|
70 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
71 | \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ |
---|
72 | \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()} |
---|
73 | \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} |
---|
74 | |
---|
75 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
76 | \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ |
---|
77 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()} |
---|
78 | \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} |
---|
79 | |
---|
80 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
81 | \subsection*{Protected Attributes} |
---|
82 | \begin{CompactItemize} |
---|
83 | \item |
---|
84 | \hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{ |
---|
85 | double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}} |
---|
86 | \label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa} |
---|
87 | |
---|
88 | \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item |
---|
89 | \hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{ |
---|
90 | vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}} |
---|
91 | \label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2} |
---|
92 | |
---|
93 | \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item |
---|
94 | \hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{ |
---|
95 | \hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}} |
---|
96 | \label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438} |
---|
97 | |
---|
98 | \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item |
---|
99 | \hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{ |
---|
100 | double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}} |
---|
101 | \label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09} |
---|
102 | |
---|
103 | \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item |
---|
104 | \hypertarget{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343}{ |
---|
105 | vec $\ast$ \hyperlink{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343}{\_\-beta}} |
---|
106 | \label{classbdm_1_1mgamma_f6a652ce70fa2eb4d2c7ba6d5a6ae343} |
---|
107 | |
---|
108 | \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item |
---|
109 | \hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{ |
---|
110 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}} |
---|
111 | \label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51} |
---|
112 | |
---|
113 | \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item |
---|
114 | \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ |
---|
115 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} |
---|
116 | \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} |
---|
117 | |
---|
118 | \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item |
---|
119 | \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ |
---|
120 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} |
---|
121 | \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} |
---|
122 | |
---|
123 | \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} |
---|
124 | |
---|
125 | |
---|
126 | \subsection{Detailed Description} |
---|
127 | Gamma random walk around a fixed point. |
---|
128 | |
---|
129 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
---|
130 | |
---|
131 | Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. |
---|
132 | |
---|
133 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. |
---|
134 | |
---|
135 | \subsection{Member Function Documentation} |
---|
136 | \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ |
---|
137 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}} |
---|
138 | \index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} |
---|
139 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
140 | \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} |
---|
141 | |
---|
142 | |
---|
143 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. |
---|
144 | |
---|
145 | \begin{Desc} |
---|
146 | \item[Parameters:] |
---|
147 | \begin{description} |
---|
148 | \item[{\em cond}]is numeric value of {\tt rv} \end{description} |
---|
149 | \end{Desc} |
---|
150 | |
---|
151 | |
---|
152 | References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). |
---|
153 | |
---|
154 | Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{ |
---|
155 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} |
---|
156 | \index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} |
---|
157 | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
158 | \label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652} |
---|
159 | |
---|
160 | |
---|
161 | Returns. |
---|
162 | |
---|
163 | \begin{Desc} |
---|
164 | \item[Parameters:] |
---|
165 | \begin{description} |
---|
166 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
---|
167 | \end{Desc} |
---|
168 | |
---|
169 | |
---|
170 | References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample(). |
---|
171 | |
---|
172 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
173 | \item |
---|
174 | \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize} |
---|