root/doc/latex/classbdm_1_1mgamma__fix.tex @ 270

Revision 270, 9.9 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

Line 
1\hypertarget{classbdm_1_1mgamma__fix}{
2\section{bdm::mgamma\_\-fix Class Reference}
3\label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}}
4}
5{\tt \#include $<$libEF.h$>$}
6
7Inheritance diagram for bdm::mgamma\_\-fix:\nopagebreak
8\begin{figure}[H]
9\begin{center}
10\leavevmode
11\includegraphics[width=75pt]{classbdm_1_1mgamma__fix__inherit__graph}
12\end{center}
13\end{figure}
14
15
16\subsection{Detailed Description}
17Gamma random walk around a fixed point.
18
19Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\]
20
21Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
22
23The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions}
24\begin{CompactItemize}
25\item 
26\hypertarget{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{
27\hyperlink{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{mgamma\_\-fix} ()}
28\label{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}
29
30\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
31\hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{
32void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)}
33\label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}
34
35\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
36\hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{
37void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)}
38\label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}
39
40\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
41\hypertarget{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{
42void \hyperlink{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k})}
43\label{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}
44
45\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize}
46\begin{Indent}{\bf Matematical operations}\par
47\begin{CompactItemize}
48\item 
49virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
50\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
51virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N)
52\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
53\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
54virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
55\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
56
57\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
58\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
59virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
60\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
61
62\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize}
63\end{Indent}
64\begin{Indent}{\bf Access to attributes}\par
65\begin{CompactItemize}
66\item 
67\hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{
68\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()}
69\label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}
70
71\item 
72\hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{
73\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()}
74\label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}
75
76\item 
77\hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{
78int \textbf{dimension} ()}
79\label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}
80
81\item 
82\hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{
83int \textbf{dimensionc} ()}
84\label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}
85
86\item 
87\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
88\hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()}
89\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
90
91\item 
92\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
93\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()}
94\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
95
96\end{CompactItemize}
97\end{Indent}
98\begin{Indent}{\bf Connection to other objects}\par
99\begin{CompactItemize}
100\item 
101\hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{
102void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)}
103\label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}
104
105\item 
106\hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{
107void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)}
108\label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}
109
110\item 
111\hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{
112bool \textbf{isnamed} ()}
113\label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}
114
115\end{CompactItemize}
116\end{Indent}
117\subsection*{Protected Attributes}
118\begin{CompactItemize}
119\item 
120\hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{
121double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}}
122\label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}
123
124\begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item 
125\hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{
126vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}}
127\label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}
128
129\begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item 
130\hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{
131\hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}}
132\label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}
133
134\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
135\hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{
136double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}}
137\label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}
138
139\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
140\hypertarget{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{
141vec \& \hyperlink{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{\_\-beta}}
142\label{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}
143
144\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
145\hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{
146int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}}
147\label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}
148
149\begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item 
150\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
151\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
152\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
153
154\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
155\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
156\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
157\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
158
159\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
160
161
162\subsection{Member Function Documentation}
163\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
164\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}}
165\index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}}
166\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
167\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
168
169
170Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
171
172\begin{Desc}
173\item[Parameters:]
174\begin{description}
175\item[{\em cond}]is numeric value of {\tt rv} \end{description}
176\end{Desc}
177
178
179References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
180
181Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{
182\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}}
183\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}}
184\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
185\label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}
186
187
188Returns.
189
190\begin{Desc}
191\item[Parameters:]
192\begin{description}
193\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
194\end{Desc}
195
196
197References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
198
199The documentation for this class was generated from the following file:\begin{CompactItemize}
200\item 
201\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.