| 1 | \hypertarget{classbdm_1_1mgamma__fix}{ |
|---|
| 2 | \section{bdm::mgamma\_\-fix Class Reference} |
|---|
| 3 | \label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}} |
|---|
| 4 | } |
|---|
| 5 | {\tt \#include $<$libEF.h$>$} |
|---|
| 6 | |
|---|
| 7 | Inheritance diagram for bdm::mgamma\_\-fix:\nopagebreak |
|---|
| 8 | \begin{figure}[H] |
|---|
| 9 | \begin{center} |
|---|
| 10 | \leavevmode |
|---|
| 11 | \includegraphics[width=75pt]{classbdm_1_1mgamma__fix__inherit__graph} |
|---|
| 12 | \end{center} |
|---|
| 13 | \end{figure} |
|---|
| 14 | |
|---|
| 15 | |
|---|
| 16 | \subsection{Detailed Description} |
|---|
| 17 | Gamma random walk around a fixed point. |
|---|
| 18 | |
|---|
| 19 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
|---|
| 20 | |
|---|
| 21 | Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. |
|---|
| 22 | |
|---|
| 23 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions} |
|---|
| 24 | \begin{CompactItemize} |
|---|
| 25 | \item |
|---|
| 26 | \hypertarget{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{ |
|---|
| 27 | \hyperlink{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{mgamma\_\-fix} ()} |
|---|
| 28 | \label{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d} |
|---|
| 29 | |
|---|
| 30 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
|---|
| 31 | \hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{ |
|---|
| 32 | void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)} |
|---|
| 33 | \label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2} |
|---|
| 34 | |
|---|
| 35 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
|---|
| 36 | \hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{ |
|---|
| 37 | void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)} |
|---|
| 38 | \label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7} |
|---|
| 39 | |
|---|
| 40 | \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item |
|---|
| 41 | \hypertarget{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{ |
|---|
| 42 | void \hyperlink{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k})} |
|---|
| 43 | \label{classbdm_1_1mgamma_0b486f7e52a3d8a39adbcbd325461c0d} |
|---|
| 44 | |
|---|
| 45 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize} |
|---|
| 46 | \begin{Indent}{\bf Matematical operations}\par |
|---|
| 47 | \begin{CompactItemize} |
|---|
| 48 | \item |
|---|
| 49 | virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) |
|---|
| 50 | \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item |
|---|
| 51 | virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N) |
|---|
| 52 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item |
|---|
| 53 | \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ |
|---|
| 54 | virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} |
|---|
| 55 | \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} |
|---|
| 56 | |
|---|
| 57 | \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item |
|---|
| 58 | \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ |
|---|
| 59 | virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} |
|---|
| 60 | \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} |
|---|
| 61 | |
|---|
| 62 | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize} |
|---|
| 63 | \end{Indent} |
|---|
| 64 | \begin{Indent}{\bf Access to attributes}\par |
|---|
| 65 | \begin{CompactItemize} |
|---|
| 66 | \item |
|---|
| 67 | \hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{ |
|---|
| 68 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()} |
|---|
| 69 | \label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10} |
|---|
| 70 | |
|---|
| 71 | \item |
|---|
| 72 | \hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{ |
|---|
| 73 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()} |
|---|
| 74 | \label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245} |
|---|
| 75 | |
|---|
| 76 | \item |
|---|
| 77 | \hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{ |
|---|
| 78 | int \textbf{dimension} ()} |
|---|
| 79 | \label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed} |
|---|
| 80 | |
|---|
| 81 | \item |
|---|
| 82 | \hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{ |
|---|
| 83 | int \textbf{dimensionc} ()} |
|---|
| 84 | \label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8} |
|---|
| 85 | |
|---|
| 86 | \item |
|---|
| 87 | \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ |
|---|
| 88 | \hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()} |
|---|
| 89 | \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} |
|---|
| 90 | |
|---|
| 91 | \item |
|---|
| 92 | \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ |
|---|
| 93 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()} |
|---|
| 94 | \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} |
|---|
| 95 | |
|---|
| 96 | \end{CompactItemize} |
|---|
| 97 | \end{Indent} |
|---|
| 98 | \begin{Indent}{\bf Connection to other objects}\par |
|---|
| 99 | \begin{CompactItemize} |
|---|
| 100 | \item |
|---|
| 101 | \hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{ |
|---|
| 102 | void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)} |
|---|
| 103 | \label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401} |
|---|
| 104 | |
|---|
| 105 | \item |
|---|
| 106 | \hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{ |
|---|
| 107 | void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} |
|---|
| 108 | \label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75} |
|---|
| 109 | |
|---|
| 110 | \item |
|---|
| 111 | \hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{ |
|---|
| 112 | bool \textbf{isnamed} ()} |
|---|
| 113 | \label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045} |
|---|
| 114 | |
|---|
| 115 | \end{CompactItemize} |
|---|
| 116 | \end{Indent} |
|---|
| 117 | \subsection*{Protected Attributes} |
|---|
| 118 | \begin{CompactItemize} |
|---|
| 119 | \item |
|---|
| 120 | \hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{ |
|---|
| 121 | double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}} |
|---|
| 122 | \label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa} |
|---|
| 123 | |
|---|
| 124 | \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item |
|---|
| 125 | \hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{ |
|---|
| 126 | vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}} |
|---|
| 127 | \label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2} |
|---|
| 128 | |
|---|
| 129 | \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item |
|---|
| 130 | \hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{ |
|---|
| 131 | \hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}} |
|---|
| 132 | \label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438} |
|---|
| 133 | |
|---|
| 134 | \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item |
|---|
| 135 | \hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{ |
|---|
| 136 | double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}} |
|---|
| 137 | \label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09} |
|---|
| 138 | |
|---|
| 139 | \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item |
|---|
| 140 | \hypertarget{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{ |
|---|
| 141 | vec \& \hyperlink{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{\_\-beta}} |
|---|
| 142 | \label{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312} |
|---|
| 143 | |
|---|
| 144 | \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item |
|---|
| 145 | \hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{ |
|---|
| 146 | int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}} |
|---|
| 147 | \label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6} |
|---|
| 148 | |
|---|
| 149 | \begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item |
|---|
| 150 | \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ |
|---|
| 151 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} |
|---|
| 152 | \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} |
|---|
| 153 | |
|---|
| 154 | \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item |
|---|
| 155 | \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ |
|---|
| 156 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} |
|---|
| 157 | \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} |
|---|
| 158 | |
|---|
| 159 | \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} |
|---|
| 160 | |
|---|
| 161 | |
|---|
| 162 | \subsection{Member Function Documentation} |
|---|
| 163 | \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ |
|---|
| 164 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}} |
|---|
| 165 | \index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} |
|---|
| 166 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
|---|
| 167 | \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} |
|---|
| 168 | |
|---|
| 169 | |
|---|
| 170 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. |
|---|
| 171 | |
|---|
| 172 | \begin{Desc} |
|---|
| 173 | \item[Parameters:] |
|---|
| 174 | \begin{description} |
|---|
| 175 | \item[{\em cond}]is numeric value of {\tt rv} \end{description} |
|---|
| 176 | \end{Desc} |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). |
|---|
| 180 | |
|---|
| 181 | Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{ |
|---|
| 182 | \index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} |
|---|
| 183 | \index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}} |
|---|
| 184 | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
|---|
| 185 | \label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005} |
|---|
| 186 | |
|---|
| 187 | |
|---|
| 188 | Returns. |
|---|
| 189 | |
|---|
| 190 | \begin{Desc} |
|---|
| 191 | \item[Parameters:] |
|---|
| 192 | \begin{description} |
|---|
| 193 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
|---|
| 194 | \end{Desc} |
|---|
| 195 | |
|---|
| 196 | |
|---|
| 197 | References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample(). |
|---|
| 198 | |
|---|
| 199 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
|---|
| 200 | \item |
|---|
| 201 | \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize} |
|---|