root/doc/latex/classbdm_1_1mgamma__fix.tex @ 271

Revision 271, 9.9 kB (checked in by smidl, 16 years ago)

Next major revision

Line 
1\hypertarget{classbdm_1_1mgamma__fix}{
2\section{bdm::mgamma\_\-fix Class Reference}
3\label{classbdm_1_1mgamma__fix}\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}}
4}
5{\tt \#include $<$libEF.h$>$}
6
7Inheritance diagram for bdm::mgamma\_\-fix::\begin{figure}[H]
8\begin{center}
9\leavevmode
10\includegraphics[height=5cm]{classbdm_1_1mgamma__fix}
11\end{center}
12\end{figure}
13
14
15\subsection{Detailed Description}
16Gamma random walk around a fixed point.
17
18Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\]
19
20Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
21
22The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25\hypertarget{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{
26\hyperlink{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}{mgamma\_\-fix} ()}
27\label{classbdm_1_1mgamma__fix_9a31bc9b4b60188a18a2a6b588dc4b2d}
28
29\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
30\hypertarget{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{
31void \hyperlink{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}{set\_\-parameters} (double k0, vec ref0, double l0)}
32\label{classbdm_1_1mgamma__fix_1bfd30e90db9dc1fbda4a9fbb0b716b2}
33
34\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
35\hypertarget{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{
36void \hyperlink{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}{condition} (const vec \&val)}
37\label{classbdm_1_1mgamma__fix_1d539591deb7a38bb3403c2b396c8ff7}
38
39\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
40\hypertarget{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{
41void \hyperlink{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}{set\_\-parameters} (double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}, const vec \&beta0)}
42\label{classbdm_1_1mgamma_a0f21c2557b233a85838b497d040ab14}
43
44\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize}
45\begin{Indent}{\bf Matematical operations}\par
46\begin{CompactItemize}
47\item 
48virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
49\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
50virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N)
51\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
52\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
53virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
54\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
55
56\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
57\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
58virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
59\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
60
61\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize}
62\end{Indent}
63\begin{Indent}{\bf Access to attributes}\par
64\begin{CompactItemize}
65\item 
66\hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{
67\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()}
68\label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}
69
70\item 
71\hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{
72\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()}
73\label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}
74
75\item 
76\hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{
77int \textbf{dimension} ()}
78\label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}
79
80\item 
81\hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{
82int \textbf{dimensionc} ()}
83\label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}
84
85\item 
86\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
87\hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()}
88\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
89
90\item 
91\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
92\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()}
93\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
94
95\end{CompactItemize}
96\end{Indent}
97\begin{Indent}{\bf Connection to other objects}\par
98\begin{CompactItemize}
99\item 
100\hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{
101void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)}
102\label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}
103
104\item 
105\hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{
106void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)}
107\label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}
108
109\item 
110\hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{
111bool \textbf{isnamed} ()}
112\label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}
113
114\end{CompactItemize}
115\end{Indent}
116\subsection*{Protected Attributes}
117\begin{CompactItemize}
118\item 
119\hypertarget{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{
120double \hyperlink{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}{l}}
121\label{classbdm_1_1mgamma__fix_1eb701506aabb2e6af007e487212d6fa}
122
123\begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item 
124\hypertarget{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{
125vec \hyperlink{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}{refl}}
126\label{classbdm_1_1mgamma__fix_018c6f901a04e419455308a07eb3b0b2}
127
128\begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item 
129\hypertarget{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{
130\hyperlink{classbdm_1_1egamma}{egamma} \hyperlink{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}{epdf}}
131\label{classbdm_1_1mgamma_bdc9f1e9e03c09e91103fee269864438}
132
133\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
134\hypertarget{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{
135double \hyperlink{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}{k}}
136\label{classbdm_1_1mgamma_b20cf88cca1fe9b0b8f2a412608bfd09}
137
138\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
139\hypertarget{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{
140vec \& \hyperlink{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}{\_\-beta}}
141\label{classbdm_1_1mgamma_3d95f4dde9214ff6dba265e18af60312}
142
143\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
144\hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{
145int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}}
146\label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}
147
148\begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item 
149\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
150\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
151\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
152
153\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
154\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
155\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
156\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
157
158\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
159
160
161\subsection{Member Function Documentation}
162\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
163\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond@{samplecond}}
164\index{samplecond@{samplecond}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}}
165\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
166\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
167
168
169Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
170
171\begin{Desc}
172\item[Parameters:]
173\begin{description}
174\item[{\em cond}]is numeric value of {\tt rv} \end{description}
175\end{Desc}
176
177
178Reimplemented in \hyperlink{classbdm_1_1mprod_ee715a8013acf9892f6cb489db595555}{bdm::mprod}.
179
180References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
181
182Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{
183\index{bdm::mgamma\_\-fix@{bdm::mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}}
184\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mgamma_fix@{bdm::mgamma\_\-fix}}
185\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
186\label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}
187
188
189Returns.
190
191\begin{Desc}
192\item[Parameters:]
193\begin{description}
194\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
195\end{Desc}
196
197
198References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
199
200The documentation for this class was generated from the following file:\begin{CompactItemize}
201\item 
202\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.