root/doc/latex/classbdm_1_1migamma.tex @ 275

Revision 271, 9.2 kB (checked in by smidl, 16 years ago)

Next major revision

Line 
1\hypertarget{classbdm_1_1migamma}{
2\section{bdm::migamma Class Reference}
3\label{classbdm_1_1migamma}\index{bdm::migamma@{bdm::migamma}}
4}
5{\tt \#include $<$libEF.h$>$}
6
7Inheritance diagram for bdm::migamma::\begin{figure}[H]
8\begin{center}
9\leavevmode
10\includegraphics[height=5cm]{classbdm_1_1migamma}
11\end{center}
12\end{figure}
13
14
15\subsection{Detailed Description}
16Inverse-Gamma random walk.
17
18Mean value, $ \mu $, of this density is given by {\tt rvc} . Standard deviation of the random walk is proportional to one $ k $-th the mean. This is achieved by setting $ \alpha=\mu/k^2+2 $ and $ \beta=\mu(\alpha-1)$.
19
20The standard deviation of the walk is then: $ \mu/\sqrt(k)$. \subsection*{Public Member Functions}
21\begin{CompactItemize}
22\item 
23\hypertarget{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{
24void \hyperlink{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{set\_\-parameters} (int len, double k0)}
25\label{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}
26
27\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
28\hypertarget{classbdm_1_1migamma_7a34b1e2e3aa2250d7c0ed7df1665b8c}{
29void \hyperlink{classbdm_1_1migamma_7a34b1e2e3aa2250d7c0ed7df1665b8c}{condition} (const vec \&val)}
30\label{classbdm_1_1migamma_7a34b1e2e3aa2250d7c0ed7df1665b8c}
31
32\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\end{CompactItemize}
33\begin{Indent}{\bf Constructors}\par
34\begin{CompactItemize}
35\item 
36\hypertarget{classbdm_1_1migamma_b109fa502a9ab521dfb48412fd45fca7}{
37\textbf{migamma} ()}
38\label{classbdm_1_1migamma_b109fa502a9ab521dfb48412fd45fca7}
39
40\item 
41\hypertarget{classbdm_1_1migamma_a0126f741c6d2b6016df95a2410071e3}{
42\textbf{migamma} (const \hyperlink{classbdm_1_1migamma}{migamma} \&m)}
43\label{classbdm_1_1migamma_a0126f741c6d2b6016df95a2410071e3}
44
45\end{CompactItemize}
46\end{Indent}
47\begin{Indent}{\bf Matematical operations}\par
48\begin{CompactItemize}
49\item 
50virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
51\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
52virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N)
53\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
54\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
55virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
56\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
57
58\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
59\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
60virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
61\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
62
63\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize}
64\end{Indent}
65\begin{Indent}{\bf Access to attributes}\par
66\begin{CompactItemize}
67\item 
68\hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{
69\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()}
70\label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}
71
72\item 
73\hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{
74\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()}
75\label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}
76
77\item 
78\hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{
79int \textbf{dimension} ()}
80\label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}
81
82\item 
83\hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{
84int \textbf{dimensionc} ()}
85\label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}
86
87\item 
88\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
89\hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()}
90\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
91
92\item 
93\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
94\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()}
95\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
96
97\end{CompactItemize}
98\end{Indent}
99\begin{Indent}{\bf Connection to other objects}\par
100\begin{CompactItemize}
101\item 
102\hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{
103void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)}
104\label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}
105
106\item 
107\hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{
108void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)}
109\label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}
110
111\item 
112\hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{
113bool \textbf{isnamed} ()}
114\label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}
115
116\end{CompactItemize}
117\end{Indent}
118\subsection*{Protected Attributes}
119\begin{CompactItemize}
120\item 
121\hypertarget{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{
122\hyperlink{classbdm_1_1eigamma}{eigamma} \hyperlink{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{epdf}}
123\label{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}
124
125\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
126\hypertarget{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{
127double \hyperlink{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{k}}
128\label{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}
129
130\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
131\hypertarget{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{
132vec \& \hyperlink{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{\_\-alpha}}
133\label{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}
134
135\begin{CompactList}\small\item\em cache of epdf.alpha \item\end{CompactList}\item 
136\hypertarget{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{
137vec \& \hyperlink{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{\_\-beta}}
138\label{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}
139
140\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
141\hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{
142int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}}
143\label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}
144
145\begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item 
146\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
147\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
148\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
149
150\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
151\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
152\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
153\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
154
155\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
156
157
158\subsection{Member Function Documentation}
159\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
160\index{bdm::migamma@{bdm::migamma}!samplecond@{samplecond}}
161\index{samplecond@{samplecond}!bdm::migamma@{bdm::migamma}}
162\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
163\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
164
165
166Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
167
168\begin{Desc}
169\item[Parameters:]
170\begin{description}
171\item[{\em cond}]is numeric value of {\tt rv} \end{description}
172\end{Desc}
173
174
175Reimplemented in \hyperlink{classbdm_1_1mprod_ee715a8013acf9892f6cb489db595555}{bdm::mprod}.
176
177References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
178
179Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{
180\index{bdm::migamma@{bdm::migamma}!samplecond\_\-m@{samplecond\_\-m}}
181\index{samplecond\_\-m@{samplecond\_\-m}!bdm::migamma@{bdm::migamma}}
182\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
183\label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}
184
185
186Returns.
187
188\begin{Desc}
189\item[Parameters:]
190\begin{description}
191\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
192\end{Desc}
193
194
195References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
196
197The documentation for this class was generated from the following file:\begin{CompactItemize}
198\item 
199\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.