\hypertarget{classbdm_1_1migamma__fix}{ \section{bdm::migamma\_\-fix Class Reference} \label{classbdm_1_1migamma__fix}\index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}} } Inverse-Gamma random walk around a fixed point. {\tt \#include $<$libEF.h$>$} Inheritance diagram for bdm::migamma\_\-fix:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=76pt]{classbdm_1_1migamma__fix__inherit__graph} \end{center} \end{figure} Collaboration diagram for bdm::migamma\_\-fix:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=400pt]{classbdm_1_1migamma__fix__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a}{ \hyperlink{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a}{migamma\_\-fix} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})} \label{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a} \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{ void \hyperlink{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{set\_\-parameters} (double k0, vec ref0, double l0)} \label{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{ void \hyperlink{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{condition} (const vec \&val)} \label{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8} \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf}{ void \hyperlink{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf}{set\_\-parameters} (double k0)} \label{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const } \label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const } \label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()} \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()} \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{ double \hyperlink{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{l}} \label{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e} \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{ vec \hyperlink{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{refl}} \label{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780} \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{ \hyperlink{classbdm_1_1eigamma}{eigamma} \hyperlink{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{epdf}} \label{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a} \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{ double \hyperlink{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{k}} \label{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c} \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96}{ vec $\ast$ \hyperlink{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96}{\_\-beta}} \label{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96} \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item \hypertarget{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252}{ vec $\ast$ \hyperlink{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252}{\_\-alpha}} \label{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252} \begin{CompactList}\small\item\em chaceh of epdf.alpha \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}} \label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51} \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Inverse-Gamma random walk around a fixed point. Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] ==== Check == vv = Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection{Member Function Documentation} \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ \index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond@{samplecond}} \index{samplecond@{samplecond}!bdm::migamma_fix@{bdm::migamma\_\-fix}} \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em cond}]is numeric value of {\tt rv} \end{description} \end{Desc} References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{ \index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} \index{samplecond\_\-m@{samplecond\_\-m}!bdm::migamma_fix@{bdm::migamma\_\-fix}} \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652} Returns. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample(). The documentation for this class was generated from the following file:\begin{CompactItemize} \item \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}