1 | \hypertarget{classbdm_1_1migamma__fix}{ |
---|
2 | \section{bdm::migamma\_\-fix Class Reference} |
---|
3 | \label{classbdm_1_1migamma__fix}\index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}} |
---|
4 | } |
---|
5 | {\tt \#include $<$libEF.h$>$} |
---|
6 | |
---|
7 | Inheritance diagram for bdm::migamma\_\-fix:\nopagebreak |
---|
8 | \begin{figure}[H] |
---|
9 | \begin{center} |
---|
10 | \leavevmode |
---|
11 | \includegraphics[width=76pt]{classbdm_1_1migamma__fix__inherit__graph} |
---|
12 | \end{center} |
---|
13 | \end{figure} |
---|
14 | |
---|
15 | |
---|
16 | \subsection{Detailed Description} |
---|
17 | Inverse-Gamma random walk around a fixed point. |
---|
18 | |
---|
19 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
---|
20 | |
---|
21 | ==== Check == vv = Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. |
---|
22 | |
---|
23 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions} |
---|
24 | \begin{CompactItemize} |
---|
25 | \item |
---|
26 | \hypertarget{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{ |
---|
27 | \hyperlink{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{migamma\_\-fix} ()} |
---|
28 | \label{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e} |
---|
29 | |
---|
30 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
31 | \hypertarget{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{ |
---|
32 | void \hyperlink{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{set\_\-parameters} (double k0, vec ref0, double l0)} |
---|
33 | \label{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440} |
---|
34 | |
---|
35 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
---|
36 | \hypertarget{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{ |
---|
37 | void \hyperlink{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{condition} (const vec \&val)} |
---|
38 | \label{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8} |
---|
39 | |
---|
40 | \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item |
---|
41 | \hypertarget{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{ |
---|
42 | void \hyperlink{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{set\_\-parameters} (int len, double k0)} |
---|
43 | \label{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151} |
---|
44 | |
---|
45 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize} |
---|
46 | \begin{Indent}{\bf Matematical operations}\par |
---|
47 | \begin{CompactItemize} |
---|
48 | \item |
---|
49 | virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond) |
---|
50 | \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item |
---|
51 | virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N) |
---|
52 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item |
---|
53 | \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ |
---|
54 | virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} |
---|
55 | \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} |
---|
56 | |
---|
57 | \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item |
---|
58 | \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ |
---|
59 | virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} |
---|
60 | \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} |
---|
61 | |
---|
62 | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize} |
---|
63 | \end{Indent} |
---|
64 | \begin{Indent}{\bf Access to attributes}\par |
---|
65 | \begin{CompactItemize} |
---|
66 | \item |
---|
67 | \hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{ |
---|
68 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()} |
---|
69 | \label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10} |
---|
70 | |
---|
71 | \item |
---|
72 | \hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{ |
---|
73 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()} |
---|
74 | \label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245} |
---|
75 | |
---|
76 | \item |
---|
77 | \hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{ |
---|
78 | int \textbf{dimension} ()} |
---|
79 | \label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed} |
---|
80 | |
---|
81 | \item |
---|
82 | \hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{ |
---|
83 | int \textbf{dimensionc} ()} |
---|
84 | \label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8} |
---|
85 | |
---|
86 | \item |
---|
87 | \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ |
---|
88 | \hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()} |
---|
89 | \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} |
---|
90 | |
---|
91 | \item |
---|
92 | \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ |
---|
93 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()} |
---|
94 | \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} |
---|
95 | |
---|
96 | \end{CompactItemize} |
---|
97 | \end{Indent} |
---|
98 | \begin{Indent}{\bf Connection to other objects}\par |
---|
99 | \begin{CompactItemize} |
---|
100 | \item |
---|
101 | \hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{ |
---|
102 | void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)} |
---|
103 | \label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401} |
---|
104 | |
---|
105 | \item |
---|
106 | \hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{ |
---|
107 | void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} |
---|
108 | \label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75} |
---|
109 | |
---|
110 | \item |
---|
111 | \hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{ |
---|
112 | bool \textbf{isnamed} ()} |
---|
113 | \label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045} |
---|
114 | |
---|
115 | \end{CompactItemize} |
---|
116 | \end{Indent} |
---|
117 | \subsection*{Protected Attributes} |
---|
118 | \begin{CompactItemize} |
---|
119 | \item |
---|
120 | \hypertarget{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{ |
---|
121 | double \hyperlink{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{l}} |
---|
122 | \label{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e} |
---|
123 | |
---|
124 | \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item |
---|
125 | \hypertarget{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{ |
---|
126 | vec \hyperlink{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{refl}} |
---|
127 | \label{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780} |
---|
128 | |
---|
129 | \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item |
---|
130 | \hypertarget{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{ |
---|
131 | \hyperlink{classbdm_1_1eigamma}{eigamma} \hyperlink{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{epdf}} |
---|
132 | \label{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a} |
---|
133 | |
---|
134 | \begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item |
---|
135 | \hypertarget{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{ |
---|
136 | double \hyperlink{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{k}} |
---|
137 | \label{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c} |
---|
138 | |
---|
139 | \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item |
---|
140 | \hypertarget{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{ |
---|
141 | vec \& \hyperlink{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{\_\-alpha}} |
---|
142 | \label{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc} |
---|
143 | |
---|
144 | \begin{CompactList}\small\item\em cache of epdf.alpha \item\end{CompactList}\item |
---|
145 | \hypertarget{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{ |
---|
146 | vec \& \hyperlink{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{\_\-beta}} |
---|
147 | \label{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5} |
---|
148 | |
---|
149 | \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item |
---|
150 | \hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{ |
---|
151 | int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}} |
---|
152 | \label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6} |
---|
153 | |
---|
154 | \begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item |
---|
155 | \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ |
---|
156 | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} |
---|
157 | \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} |
---|
158 | |
---|
159 | \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item |
---|
160 | \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ |
---|
161 | \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} |
---|
162 | \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} |
---|
163 | |
---|
164 | \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} |
---|
165 | |
---|
166 | |
---|
167 | \subsection{Member Function Documentation} |
---|
168 | \hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{ |
---|
169 | \index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond@{samplecond}} |
---|
170 | \index{samplecond@{samplecond}!bdm::migamma_fix@{bdm::migamma\_\-fix}} |
---|
171 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
172 | \label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367} |
---|
173 | |
---|
174 | |
---|
175 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. |
---|
176 | |
---|
177 | \begin{Desc} |
---|
178 | \item[Parameters:] |
---|
179 | \begin{description} |
---|
180 | \item[{\em cond}]is numeric value of {\tt rv} \end{description} |
---|
181 | \end{Desc} |
---|
182 | |
---|
183 | |
---|
184 | References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample(). |
---|
185 | |
---|
186 | Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{ |
---|
187 | \index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} |
---|
188 | \index{samplecond\_\-m@{samplecond\_\-m}!bdm::migamma_fix@{bdm::migamma\_\-fix}} |
---|
189 | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
---|
190 | \label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005} |
---|
191 | |
---|
192 | |
---|
193 | Returns. |
---|
194 | |
---|
195 | \begin{Desc} |
---|
196 | \item[Parameters:] |
---|
197 | \begin{description} |
---|
198 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
---|
199 | \end{Desc} |
---|
200 | |
---|
201 | |
---|
202 | References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample(). |
---|
203 | |
---|
204 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
205 | \item |
---|
206 | \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize} |
---|