root/doc/latex/classbdm_1_1migamma__fix.tex @ 270

Revision 270, 10.2 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

Line 
1\hypertarget{classbdm_1_1migamma__fix}{
2\section{bdm::migamma\_\-fix Class Reference}
3\label{classbdm_1_1migamma__fix}\index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}}
4}
5{\tt \#include $<$libEF.h$>$}
6
7Inheritance diagram for bdm::migamma\_\-fix:\nopagebreak
8\begin{figure}[H]
9\begin{center}
10\leavevmode
11\includegraphics[width=76pt]{classbdm_1_1migamma__fix__inherit__graph}
12\end{center}
13\end{figure}
14
15
16\subsection{Detailed Description}
17Inverse-Gamma random walk around a fixed point.
18
19Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\]
20
21==== Check == vv = Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
22
23The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions}
24\begin{CompactItemize}
25\item 
26\hypertarget{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{
27\hyperlink{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{migamma\_\-fix} ()}
28\label{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}
29
30\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
31\hypertarget{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{
32void \hyperlink{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}{set\_\-parameters} (double k0, vec ref0, double l0)}
33\label{classbdm_1_1migamma__fix_17f9ce1068660a4e8c05173bef7d7440}
34
35\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
36\hypertarget{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{
37void \hyperlink{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}{condition} (const vec \&val)}
38\label{classbdm_1_1migamma__fix_cfbabd293795d44aae1b7c874e57c4b8}
39
40\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
41\hypertarget{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{
42void \hyperlink{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{set\_\-parameters} (int len, double k0)}
43\label{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}
44
45\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize}
46\begin{Indent}{\bf Matematical operations}\par
47\begin{CompactItemize}
48\item 
49virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
50\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
51virtual mat \hyperlink{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{samplecond\_\-m} (const vec \&cond, int N)
52\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
53\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
54virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
55\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
56
57\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
58\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
59virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
60\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
61
62\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize}
63\end{Indent}
64\begin{Indent}{\bf Access to attributes}\par
65\begin{CompactItemize}
66\item 
67\hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{
68\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()}
69\label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}
70
71\item 
72\hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{
73\hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()}
74\label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}
75
76\item 
77\hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{
78int \textbf{dimension} ()}
79\label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}
80
81\item 
82\hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{
83int \textbf{dimensionc} ()}
84\label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}
85
86\item 
87\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
88\hyperlink{classbdm_1_1epdf}{epdf} \& \textbf{\_\-epdf} ()}
89\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
90
91\item 
92\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
93\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \textbf{\_\-e} ()}
94\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
95
96\end{CompactItemize}
97\end{Indent}
98\begin{Indent}{\bf Connection to other objects}\par
99\begin{CompactItemize}
100\item 
101\hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{
102void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)}
103\label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}
104
105\item 
106\hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{
107void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)}
108\label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}
109
110\item 
111\hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{
112bool \textbf{isnamed} ()}
113\label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}
114
115\end{CompactItemize}
116\end{Indent}
117\subsection*{Protected Attributes}
118\begin{CompactItemize}
119\item 
120\hypertarget{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{
121double \hyperlink{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}{l}}
122\label{classbdm_1_1migamma__fix_e1c344accac36d7ccc3ffa502e8d2f4e}
123
124\begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item 
125\hypertarget{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{
126vec \hyperlink{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}{refl}}
127\label{classbdm_1_1migamma__fix_5d453e5a2bdfc9a16c8acb8842dc9780}
128
129\begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item 
130\hypertarget{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{
131\hyperlink{classbdm_1_1eigamma}{eigamma} \hyperlink{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}{epdf}}
132\label{classbdm_1_1migamma_a31b39d4179551b593c9e0d7d756783a}
133
134\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
135\hypertarget{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{
136double \hyperlink{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}{k}}
137\label{classbdm_1_1migamma_dc56bc9da542e0103ec16b9be8e5e38c}
138
139\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
140\hypertarget{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{
141vec \& \hyperlink{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{\_\-alpha}}
142\label{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}
143
144\begin{CompactList}\small\item\em cache of epdf.alpha \item\end{CompactList}\item 
145\hypertarget{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{
146vec \& \hyperlink{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{\_\-beta}}
147\label{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}
148
149\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
150\hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{
151int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}}
152\label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}
153
154\begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item 
155\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
156\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
157\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
158
159\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
160\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
161\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
162\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
163
164\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
165
166
167\subsection{Member Function Documentation}
168\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
169\index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond@{samplecond}}
170\index{samplecond@{samplecond}!bdm::migamma_fix@{bdm::migamma\_\-fix}}
171\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
172\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
173
174
175Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
176
177\begin{Desc}
178\item[Parameters:]
179\begin{description}
180\item[{\em cond}]is numeric value of {\tt rv} \end{description}
181\end{Desc}
182
183
184References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
185
186Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}{
187\index{bdm::migamma\_\-fix@{bdm::migamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}}
188\index{samplecond\_\-m@{samplecond\_\-m}!bdm::migamma_fix@{bdm::migamma\_\-fix}}
189\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
190\label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005}
191
192
193Returns.
194
195\begin{Desc}
196\item[Parameters:]
197\begin{description}
198\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
199\end{Desc}
200
201
202References bdm::mpdf::condition(), bdm::epdf::dimension(), bdm::mpdf::ep, and bdm::epdf::sample().
203
204The documentation for this class was generated from the following file:\begin{CompactItemize}
205\item 
206\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.