root/doc/latex/classbdm_1_1mlnorm.tex @ 261

Revision 261, 9.9 kB (checked in by smidl, 16 years ago)

doc

RevLine 
[261]1\hypertarget{classbdm_1_1mlnorm}{
2\section{bdm::mlnorm$<$ sq\_\-T $>$ Class Template Reference}
3\label{classbdm_1_1mlnorm}\index{bdm::mlnorm@{bdm::mlnorm}}
4}
5Normal distributed linear function with linear function of mean value;. 
6
7
8{\tt \#include $<$libEF.h$>$}
9
10Inheritance diagram for bdm::mlnorm$<$ sq\_\-T $>$:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=164pt]{classbdm_1_1mlnorm__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for bdm::mlnorm$<$ sq\_\-T $>$:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=101pt]{classbdm_1_1mlnorm__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classbdm_1_1mlnorm_64d965df6811ff65b94718c427048f4a}{
28\hyperlink{classbdm_1_1mlnorm_64d965df6811ff65b94718c427048f4a}{mlnorm} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})}
29\label{classbdm_1_1mlnorm_64d965df6811ff65b94718c427048f4a}
30
31\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
32\hypertarget{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f}{
33void \hyperlink{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f}{set\_\-parameters} (const mat \&A, const vec \&mu0, const sq\_\-T \&R)}
34\label{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f}
35
36\begin{CompactList}\small\item\em Set {\tt A} and {\tt R}. \item\end{CompactList}\item 
37\hypertarget{classbdm_1_1mlnorm_0dafc0196e7e07fd06dc6716e0e18bc2}{
38void \hyperlink{classbdm_1_1mlnorm_0dafc0196e7e07fd06dc6716e0e18bc2}{condition} (const vec \&cond)}
39\label{classbdm_1_1mlnorm_0dafc0196e7e07fd06dc6716e0e18bc2}
40
41\begin{CompactList}\small\item\em Set value of {\tt rvc} . Result of this operation is stored in {\tt \hyperlink{classbdm_1_1epdf}{epdf}} use function {\tt \_\-ep} to access it. \item\end{CompactList}\item 
42\hypertarget{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced}{
43vec \& \hyperlink{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced}{\_\-mu\_\-const} ()}
44\label{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced}
45
46\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
47\hypertarget{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614}{
48mat \& \hyperlink{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614}{\_\-A} ()}
49\label{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614}
50
51\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
52\hypertarget{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604}{
53mat \hyperlink{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604}{\_\-R} ()}
54\label{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604}
55
56\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
57virtual vec \hyperlink{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{samplecond} (const vec \&cond, double \&ll)
58\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
59virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N)
60\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
61\hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{
62virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)}
63\label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}
64
65\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
66\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
67virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
68\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
69
70\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 
71\hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{
72\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const }
73\label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}
74
75\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
76\hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{
77\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const }
78\label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}
79
80\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
81\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
82\hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()}
83\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
84
85\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
86\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
87\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()}
88\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
89
90\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
91\subsection*{Protected Attributes}
92\begin{CompactItemize}
93\item 
94\hypertarget{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd}{
95\hyperlink{classbdm_1_1enorm}{enorm}$<$ sq\_\-T $>$ \hyperlink{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd}{epdf}}
96\label{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd}
97
98\begin{CompactList}\small\item\em Internal \hyperlink{classbdm_1_1epdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
99\hypertarget{classbdm_1_1mlnorm_8207ae86d1722102897e139a23e29af8}{
100mat \textbf{A}}
101\label{classbdm_1_1mlnorm_8207ae86d1722102897e139a23e29af8}
102
103\item 
104\hypertarget{classbdm_1_1mlnorm_3a019144d414d1737aea331ffe1c3845}{
105vec \textbf{mu\_\-const}}
106\label{classbdm_1_1mlnorm_3a019144d414d1737aea331ffe1c3845}
107
108\item 
109\hypertarget{classbdm_1_1mlnorm_dea5ea658d5020c11da91275f592244b}{
110vec \& \textbf{\_\-mu}}
111\label{classbdm_1_1mlnorm_dea5ea658d5020c11da91275f592244b}
112
113\item 
114\hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{
115\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}}
116\label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}
117
118\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
119\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
120\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
121\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
122
123\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
124\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
125\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
126\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
127
128\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
129\subsection*{Friends}
130\begin{CompactItemize}
131\item 
132\hypertarget{classbdm_1_1mlnorm_1917009347bb410f73bf827df8767b09}{
133{\footnotesize template$<$class sq\_\-M$>$ }\\std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, \hyperlink{classbdm_1_1mlnorm}{mlnorm}$<$ sq\_\-M $>$ \&ml)}
134\label{classbdm_1_1mlnorm_1917009347bb410f73bf827df8767b09}
135
136\end{CompactItemize}
137
138
139\subsection{Detailed Description}
140\subsubsection*{template$<$class sq\_\-T$>$ class bdm::mlnorm$<$ sq\_\-T $>$}
141
142Normal distributed linear function with linear function of mean value;.
143
144Mean value $mu=A*rvc+mu_0$.
145
146\subsection{Member Function Documentation}
147\hypertarget{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{
148\index{bdm::mlnorm@{bdm::mlnorm}!samplecond@{samplecond}}
149\index{samplecond@{samplecond}!bdm::mlnorm@{bdm::mlnorm}}
150\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond}, \/  double \& {\em ll})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
151\label{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}
152
153
154Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
155
156\begin{Desc}
157\item[Parameters:]
158\begin{description}
159\item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
160\end{Desc}
161
162
163Reimplemented in \hyperlink{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}{bdm::mprod}.
164
165References bdm::mpdf::condition(), bdm::mpdf::ep, bdm::epdf::evallog(), and bdm::epdf::sample().
166
167Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{
168\index{bdm::mlnorm@{bdm::mlnorm}!samplecond\_\-m@{samplecond\_\-m}}
169\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mlnorm@{bdm::mlnorm}}
170\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
171\label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}
172
173
174Returns.
175
176\begin{Desc}
177\item[Parameters:]
178\begin{description}
179\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
180\end{Desc}
181
182
183References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample().
184
185The documentation for this class was generated from the following file:\begin{CompactItemize}
186\item 
187\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.