\hypertarget{classbdm_1_1mlstudent}{ \section{bdm::mlstudent Class Reference} \label{classbdm_1_1mlstudent}\index{bdm::mlstudent@{bdm::mlstudent}} } {\tt \#include $<$libEF.h$>$} Inheritance diagram for bdm::mlstudent:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=116pt]{classbdm_1_1mlstudent__inherit__graph} \end{center} \end{figure} Collaboration diagram for bdm::mlstudent:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[height=400pt]{classbdm_1_1mlstudent__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classbdm_1_1mlstudent_bc2b6a8c8ba7946e6a3f2b66aa56f288}{ \textbf{mlstudent} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0, const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)} \label{classbdm_1_1mlstudent_bc2b6a8c8ba7946e6a3f2b66aa56f288} \item \hypertarget{classbdm_1_1mlstudent_4cdf79aac1b2165c0290e73810a0e4a3}{ void \textbf{set\_\-parameters} (const mat \&A0, const vec \&mu0, const \hyperlink{classldmat}{ldmat} \&R0, const \hyperlink{classldmat}{ldmat} \&Lambda0)} \label{classbdm_1_1mlstudent_4cdf79aac1b2165c0290e73810a0e4a3} \item \hypertarget{classbdm_1_1mlstudent_efd37560585c8613897f30d3c2f58d0d}{ void \hyperlink{classbdm_1_1mlstudent_efd37560585c8613897f30d3c2f58d0d}{condition} (const vec \&cond)} \label{classbdm_1_1mlstudent_efd37560585c8613897f30d3c2f58d0d} \begin{CompactList}\small\item\em Set value of {\tt rvc} . Result of this operation is stored in {\tt \hyperlink{classbdm_1_1epdf}{epdf}} use function {\tt \_\-ep} to access it. \item\end{CompactList}\item \hypertarget{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f}{ void \hyperlink{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f}{set\_\-parameters} (const mat \&A, const vec \&mu0, const \hyperlink{classldmat}{ldmat} \&R)} \label{classbdm_1_1mlnorm_5d18dec3167584338a4775c1d165d96f} \begin{CompactList}\small\item\em Set {\tt A} and {\tt R}. \item\end{CompactList}\item \hypertarget{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced}{ vec \& \hyperlink{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced}{\_\-mu\_\-const} ()} \label{classbdm_1_1mlnorm_56e587952f94fcac6cfc999eae6dbced} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614}{ mat \& \hyperlink{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614}{\_\-A} ()} \label{classbdm_1_1mlnorm_262a2a486bff585f34bb6a5005b02614} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604}{ mat \hyperlink{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604}{\_\-R} ()} \label{classbdm_1_1mlnorm_78120ecd1c2b1d7e80124b4603504604} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item virtual vec \hyperlink{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{samplecond} (const vec \&cond, double \&ll) \begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{ virtual double \hyperlink{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b}{evallogcond} (const vec \&dt, const vec \&cond)} \label{classbdm_1_1mpdf_6336a8a72462e2a56a3989a220f18b1b} \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{ virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} \label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb} \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const } \label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const } \label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{ \hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()} \label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()} \label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classbdm_1_1mlstudent_41595144a79594acbe288c6b59412657}{ \hyperlink{classldmat}{ldmat} \textbf{Lambda}} \label{classbdm_1_1mlstudent_41595144a79594acbe288c6b59412657} \item \hypertarget{classbdm_1_1mlstudent_72e9bda4d6684e07faafc4b2192daf39}{ \hyperlink{classldmat}{ldmat} \& \textbf{\_\-R}} \label{classbdm_1_1mlstudent_72e9bda4d6684e07faafc4b2192daf39} \item \hypertarget{classbdm_1_1mlstudent_1c063ad6cb6e079ee11bc4128c2c9fe8}{ \hyperlink{classldmat}{ldmat} \textbf{Re}} \label{classbdm_1_1mlstudent_1c063ad6cb6e079ee11bc4128c2c9fe8} \item \hypertarget{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd}{ \hyperlink{classbdm_1_1enorm}{enorm}$<$ \hyperlink{classldmat}{ldmat} $>$ \hyperlink{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd}{epdf}} \label{classbdm_1_1mlnorm_150ad6acb223b0a0abeaf92346686dcd} \begin{CompactList}\small\item\em Internal epdf that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item \hypertarget{classbdm_1_1mlnorm_8207ae86d1722102897e139a23e29af8}{ mat \textbf{A}} \label{classbdm_1_1mlnorm_8207ae86d1722102897e139a23e29af8} \item \hypertarget{classbdm_1_1mlnorm_3a019144d414d1737aea331ffe1c3845}{ vec \textbf{mu\_\-const}} \label{classbdm_1_1mlnorm_3a019144d414d1737aea331ffe1c3845} \item \hypertarget{classbdm_1_1mlnorm_dea5ea658d5020c11da91275f592244b}{ vec \& \textbf{\_\-mu}} \label{classbdm_1_1mlnorm_dea5ea658d5020c11da91275f592244b} \item \hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}} \label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51} \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{ \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}} \label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288} \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item \hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}} \label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0} \begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize} \subsection*{Friends} \begin{CompactItemize} \item \hypertarget{classbdm_1_1mlnorm_1917009347bb410f73bf827df8767b09}{ std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, \hyperlink{classbdm_1_1mlnorm}{mlnorm}$<$ sq\_\-M $>$ \&ml)} \label{classbdm_1_1mlnorm_1917009347bb410f73bf827df8767b09} \end{CompactItemize} \subsection{Detailed Description} (Approximate) Student t density with linear function of mean value The internal \hyperlink{classbdm_1_1epdf}{epdf} of this class is of the type of a Gaussian (\hyperlink{classbdm_1_1enorm}{enorm}). However, each conditioning is trying to assure the best possible approximation by taking into account the zeta function. See \mbox{[}\mbox{]} for reference. Perhaps a moment-matching technique? \subsection{Member Function Documentation} \hypertarget{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{ \index{bdm::mlstudent@{bdm::mlstudent}!samplecond@{samplecond}} \index{samplecond@{samplecond}!bdm::mlstudent@{bdm::mlstudent}} \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond}, \/ double \& {\em ll})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2} Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} Reimplemented in \hyperlink{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}{bdm::mprod}. References bdm::mpdf::condition(), bdm::mpdf::ep, bdm::epdf::evallog(), and bdm::epdf::sample(). Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{ \index{bdm::mlstudent@{bdm::mlstudent}!samplecond\_\-m@{samplecond\_\-m}} \index{samplecond\_\-m@{samplecond\_\-m}!bdm::mlstudent@{bdm::mlstudent}} \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652} Returns. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample(). The documentation for this class was generated from the following file:\begin{CompactItemize} \item \hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}