root/doc/latex/classbdm_1_1mprod.tex @ 269

Revision 269, 10.9 kB (checked in by smidl, 16 years ago)

doc

Line 
1\hypertarget{classbdm_1_1mprod}{
2\section{bdm::mprod Class Reference}
3\label{classbdm_1_1mprod}\index{bdm::mprod@{bdm::mprod}}
4}
5Chain rule decomposition of \hyperlink{classbdm_1_1epdf}{epdf}
6
7
8{\tt \#include $<$emix.h$>$}
9
10Inheritance diagram for bdm::mprod:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=123pt]{classbdm_1_1mprod__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for bdm::mprod:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=150pt]{classbdm_1_1mprod__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classbdm_1_1mprod_680c3e2d95b116c7cfb227c7f2984525}{
28\hyperlink{classbdm_1_1mprod_680c3e2d95b116c7cfb227c7f2984525}{mprod} (Array$<$ \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ $>$ mFacs)}
29\label{classbdm_1_1mprod_680c3e2d95b116c7cfb227c7f2984525}
30
31\begin{CompactList}\small\item\em Constructor from list of mFacs,. \item\end{CompactList}\item 
32\hypertarget{classbdm_1_1mprod_800f21d94c919137608a2fd5c88719e2}{
33double \hyperlink{classbdm_1_1mprod_800f21d94c919137608a2fd5c88719e2}{evallogcond} (const vec \&val, const vec \&cond)}
34\label{classbdm_1_1mprod_800f21d94c919137608a2fd5c88719e2}
35
36\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
37vec \hyperlink{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}{samplecond} (const vec \&cond, double \&ll)
38\item 
39\hypertarget{classbdm_1_1mprod_b493b5565dc6a5617927421d32697cc6}{
40mat \textbf{samplecond} (const vec \&cond, vec \&ll, int N)}
41\label{classbdm_1_1mprod_b493b5565dc6a5617927421d32697cc6}
42
43\item 
44\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1compositepdf_c73d39acc4378eee6a63155c3517d3c9}{getrv} (bool checkoverlap=false)
45\begin{CompactList}\small\item\em find common rv, flag \item\end{CompactList}\item 
46\hypertarget{classbdm_1_1compositepdf_c71fc2c51f49d797e61f479f543c75ce}{
47void \hyperlink{classbdm_1_1compositepdf_c71fc2c51f49d797e61f479f543c75ce}{setrvc} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})}
48\label{classbdm_1_1compositepdf_c71fc2c51f49d797e61f479f543c75ce}
49
50\begin{CompactList}\small\item\em common rvc of all mpdfs is written to rvc \item\end{CompactList}\item 
51virtual vec \hyperlink{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{samplecond} (const vec \&cond)
52\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
53virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N)
54\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
55\hypertarget{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}{
56virtual void \hyperlink{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}{condition} (const vec \&cond)}
57\label{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}
58
59\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
60\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
61virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
62\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
63
64\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 
65\hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{
66\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const }
67\label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}
68
69\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
70\hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{
71\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const }
72\label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}
73
74\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
75\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
76\hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()}
77\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
78
79\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
80\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
81\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()}
82\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
83
84\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
85\subsection*{Protected Attributes}
86\begin{CompactItemize}
87\item 
88\hypertarget{classbdm_1_1mprod_eca722ed1b219727c6c0f8cbc6bf1e51}{
89Array$<$ \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ $>$ \hyperlink{classbdm_1_1mprod_eca722ed1b219727c6c0f8cbc6bf1e51}{epdfs}}
90\label{classbdm_1_1mprod_eca722ed1b219727c6c0f8cbc6bf1e51}
91
92\begin{CompactList}\small\item\em pointers to epdfs - shortcut to \hyperlink{classbdm_1_1compositepdf_23faf2debc4dde10836393b8c665914a}{mpdfs()}.\hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf()} \item\end{CompactList}\item 
93\hypertarget{classbdm_1_1mprod_acf679b3b1d48629c5a042d9ac0d973f}{
94Array$<$ \hyperlink{classbdm_1_1datalink__m2m}{datalink\_\-m2m} $\ast$ $>$ \hyperlink{classbdm_1_1mprod_acf679b3b1d48629c5a042d9ac0d973f}{dls}}
95\label{classbdm_1_1mprod_acf679b3b1d48629c5a042d9ac0d973f}
96
97\begin{CompactList}\small\item\em Data link for each mpdfs. \item\end{CompactList}\item 
98\hypertarget{classbdm_1_1compositepdf_7ca3cd8ed92a7154f5b9ff13b1e9d52a}{
99int \hyperlink{classbdm_1_1compositepdf_7ca3cd8ed92a7154f5b9ff13b1e9d52a}{n}}
100\label{classbdm_1_1compositepdf_7ca3cd8ed92a7154f5b9ff13b1e9d52a}
101
102\begin{CompactList}\small\item\em Number of mpdfs in the composite. \item\end{CompactList}\item 
103\hypertarget{classbdm_1_1compositepdf_23faf2debc4dde10836393b8c665914a}{
104Array$<$ \hyperlink{classbdm_1_1mpdf}{mpdf} $\ast$ $>$ \hyperlink{classbdm_1_1compositepdf_23faf2debc4dde10836393b8c665914a}{mpdfs}}
105\label{classbdm_1_1compositepdf_23faf2debc4dde10836393b8c665914a}
106
107\begin{CompactList}\small\item\em Elements of composition. \item\end{CompactList}\item 
108\hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{
109\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}}
110\label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}
111
112\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
113\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
114\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
115\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
116
117\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
118\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
119\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
120\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
121
122\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
123
124
125\subsection{Detailed Description}
126Chain rule decomposition of \hyperlink{classbdm_1_1epdf}{epdf}.
127
128Probability density in the form of Chain-rule decomposition: $\backslash$\mbox{[} f(x\_\-1,x\_\-2,x\_\-3) = f(x\_\-1$|$x\_\-2,x\_\-3)f(x\_\-2,x\_\-3)f(x\_\-3) $\backslash$\mbox{]} Note that
129
130\subsection{Member Function Documentation}
131\hypertarget{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}{
132\index{bdm::mprod@{bdm::mprod}!samplecond@{samplecond}}
133\index{samplecond@{samplecond}!bdm::mprod@{bdm::mprod}}
134\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}vec bdm::mprod::samplecond (const vec \& {\em cond}, \/  double \& {\em ll})\hspace{0.3cm}{\tt  \mbox{[}inline\mbox{]}}}}
135\label{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}
136
137
138
139
140Ugly hack to help to discover if mpfs are not in proper order. Correct solution = check that explicitely.
141
142References bdm::RV::count(), dls, epdfs, bdm::compositepdf::mpdfs, bdm::compositepdf::n, and bdm::mpdf::rv.\hypertarget{classbdm_1_1compositepdf_c73d39acc4378eee6a63155c3517d3c9}{
143\index{bdm::mprod@{bdm::mprod}!getrv@{getrv}}
144\index{getrv@{getrv}!bdm::mprod@{bdm::mprod}}
145\subsubsection[getrv]{\setlength{\rightskip}{0pt plus 5cm}{\bf RV} bdm::compositepdf::getrv (bool {\em checkoverlap} = {\tt false})\hspace{0.3cm}{\tt  \mbox{[}inherited\mbox{]}}}}
146\label{classbdm_1_1compositepdf_c73d39acc4378eee6a63155c3517d3c9}
147
148
149find common rv, flag
150
151\begin{Desc}
152\item[Parameters:]
153\begin{description}
154\item[{\em checkoverlap}]modifies whether overlaps are acceptable \end{description}
155\end{Desc}
156
157
158References bdm::RV::add(), bdm::compositepdf::mpdfs, and bdm::compositepdf::n.\hypertarget{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}{
159\index{bdm::mprod@{bdm::mprod}!samplecond@{samplecond}}
160\index{samplecond@{samplecond}!bdm::mprod@{bdm::mprod}}
161\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
162\label{classbdm_1_1mpdf_f0c1db6fcbb3aae2dd6123884457a367}
163
164
165Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
166
167\begin{Desc}
168\item[Parameters:]
169\begin{description}
170\item[{\em cond}]is numeric value of {\tt rv} \end{description}
171\end{Desc}
172
173
174References bdm::mpdf::condition(), bdm::mpdf::ep, and bdm::epdf::sample().
175
176Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{
177\index{bdm::mprod@{bdm::mprod}!samplecond\_\-m@{samplecond\_\-m}}
178\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mprod@{bdm::mprod}}
179\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
180\label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}
181
182
183Returns.
184
185\begin{Desc}
186\item[Parameters:]
187\begin{description}
188\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
189\end{Desc}
190
191
192References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample().
193
194The documentation for this class was generated from the following file:\begin{CompactItemize}
195\item 
196\hyperlink{emix_8h}{emix.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.