root/doc/latex/classbdm_1_1mratio.tex @ 261

Revision 261, 10.2 kB (checked in by smidl, 16 years ago)

doc

RevLine 
[261]1\hypertarget{classbdm_1_1mratio}{
2\section{bdm::mratio Class Reference}
3\label{classbdm_1_1mratio}\index{bdm::mratio@{bdm::mratio}}
4}
5Class representing ratio of two densities which arise e.g. by applying the Bayes rule. It represents density in the form: \[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] where $ f(rvc) = \int f(rv,rvc) d\ rv $
6
7
8{\tt \#include $<$emix.h$>$}
9
10Inheritance diagram for bdm::mratio:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=64pt]{classbdm_1_1mratio__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for bdm::mratio:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=148pt]{classbdm_1_1mratio__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hyperlink{classbdm_1_1mratio_0ff56d13f9515d7e5f23b7a4cc5529b4}{mratio} (const \hyperlink{classbdm_1_1epdf}{epdf} $\ast$nom0, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, bool copy=false)
28\item 
29\hypertarget{classbdm_1_1mratio_3a2cbce8c61ca9f592d9c2220f7c1204}{
30double \hyperlink{classbdm_1_1mratio_3a2cbce8c61ca9f592d9c2220f7c1204}{evallogcond} (const vec \&val, const vec \&cond)}
31\label{classbdm_1_1mratio_3a2cbce8c61ca9f592d9c2220f7c1204}
32
33\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classbdm_1_1epdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
34\hypertarget{classbdm_1_1mratio_c8b39fea586d4258bb3c881406edaf15}{
35void \hyperlink{classbdm_1_1mratio_c8b39fea586d4258bb3c881406edaf15}{ownnom} ()}
36\label{classbdm_1_1mratio_c8b39fea586d4258bb3c881406edaf15}
37
38\begin{CompactList}\small\item\em Object takes ownership of nom and will destroy it. \item\end{CompactList}\item 
39\hypertarget{classbdm_1_1mratio_c0cc0b25dbdc54751466616655454c5c}{
40\hyperlink{classbdm_1_1mratio_c0cc0b25dbdc54751466616655454c5c}{$\sim$mratio} ()}
41\label{classbdm_1_1mratio_c0cc0b25dbdc54751466616655454c5c}
42
43\begin{CompactList}\small\item\em Default destructor. \item\end{CompactList}\item 
44virtual vec \hyperlink{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{samplecond} (const vec \&cond, double \&ll)
45\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
46virtual mat \hyperlink{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N)
47\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
48\hypertarget{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}{
49virtual void \hyperlink{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}{condition} (const vec \&cond)}
50\label{classbdm_1_1mpdf_db94784a9aacf74c65c5a014f6743530}
51
52\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classbdm_1_1mpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
53\hypertarget{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{
54virtual vec \hyperlink{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
55\label{classbdm_1_1mpdf_0b0ed1ed663071bb7cf4a1349eb94fcb}
56
57\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 
58\hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{
59\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const }
60\label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}
61
62\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
63\hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{
64\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const }
65\label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}
66
67\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
68\hypertarget{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{
69\hyperlink{classbdm_1_1epdf}{epdf} \& \hyperlink{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}{\_\-epdf} ()}
70\label{classbdm_1_1mpdf_1892fe3933488942253679f068e9e7f6}
71
72\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
73\hypertarget{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{
74\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}{\_\-e} ()}
75\label{classbdm_1_1mpdf_05e843fd11c410a99dad2b88c55aca80}
76
77\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
78\subsection*{Protected Attributes}
79\begin{CompactItemize}
80\item 
81\hypertarget{classbdm_1_1mratio_f31caba90a2aa10fbf7631832404fe54}{
82const \hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mratio_f31caba90a2aa10fbf7631832404fe54}{nom}}
83\label{classbdm_1_1mratio_f31caba90a2aa10fbf7631832404fe54}
84
85\begin{CompactList}\small\item\em Nominator in the form of \hyperlink{classbdm_1_1mpdf}{mpdf}. \item\end{CompactList}\item 
86\hypertarget{classbdm_1_1mratio_7daa5d02d3a3be9d15fd4156d886ed88}{
87\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mratio_7daa5d02d3a3be9d15fd4156d886ed88}{den}}
88\label{classbdm_1_1mratio_7daa5d02d3a3be9d15fd4156d886ed88}
89
90\begin{CompactList}\small\item\em Denominator in the form of \hyperlink{classbdm_1_1epdf}{epdf}. \item\end{CompactList}\item 
91\hypertarget{classbdm_1_1mratio_51bfe6675e724f7fbeaaeacce5a9f9b8}{
92bool \hyperlink{classbdm_1_1mratio_51bfe6675e724f7fbeaaeacce5a9f9b8}{destroynom}}
93\label{classbdm_1_1mratio_51bfe6675e724f7fbeaaeacce5a9f9b8}
94
95\begin{CompactList}\small\item\em flag for destructor \item\end{CompactList}\item 
96\hypertarget{classbdm_1_1mratio_cda5bd23ba60146d69e1f804ff7710c7}{
97\hyperlink{classbdm_1_1datalink__m2e}{datalink\_\-m2e} \hyperlink{classbdm_1_1mratio_cda5bd23ba60146d69e1f804ff7710c7}{dl}}
98\label{classbdm_1_1mratio_cda5bd23ba60146d69e1f804ff7710c7}
99
100\begin{CompactList}\small\item\em datalink between conditional and nom \item\end{CompactList}\item 
101\hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{
102\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}}
103\label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}
104
105\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
106\hypertarget{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{
107\hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc}}
108\label{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}
109
110\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
111\hypertarget{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{
112\hyperlink{classbdm_1_1epdf}{epdf} $\ast$ \hyperlink{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}{ep}}
113\label{classbdm_1_1mpdf_5eea43c56d38e4441bfb30270db949c0}
114
115\begin{CompactList}\small\item\em pointer to internal \hyperlink{classbdm_1_1epdf}{epdf} \item\end{CompactList}\end{CompactItemize}
116
117
118\subsection{Detailed Description}
119Class representing ratio of two densities which arise e.g. by applying the Bayes rule. It represents density in the form: \[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] where $ f(rvc) = \int f(rv,rvc) d\ rv $.
120
121In particular this type of arise by conditioning of a mixture model.
122
123At present the only supported operation is \hyperlink{classbdm_1_1mratio_3a2cbce8c61ca9f592d9c2220f7c1204}{evallogcond()}.
124
125\subsection{Constructor \& Destructor Documentation}
126\hypertarget{classbdm_1_1mratio_0ff56d13f9515d7e5f23b7a4cc5529b4}{
127\index{bdm::mratio@{bdm::mratio}!mratio@{mratio}}
128\index{mratio@{mratio}!bdm::mratio@{bdm::mratio}}
129\subsubsection[mratio]{\setlength{\rightskip}{0pt plus 5cm}bdm::mratio::mratio (const {\bf epdf} $\ast$ {\em nom0}, \/  const {\bf RV} \& {\em rv}, \/  bool {\em copy} = {\tt false})\hspace{0.3cm}{\tt  \mbox{[}inline\mbox{]}}}}
130\label{classbdm_1_1mratio_0ff56d13f9515d7e5f23b7a4cc5529b4}
131
132
133Default constructor. By default, the given \hyperlink{classbdm_1_1epdf}{epdf} is not copied! It is assumed that this function will be used only temporarily.
134
135References den, destroynom, bdm::RV::length(), bdm::epdf::marginal(), nom, and bdm::mpdf::rvc.
136
137\subsection{Member Function Documentation}
138\hypertarget{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}{
139\index{bdm::mratio@{bdm::mratio}!samplecond@{samplecond}}
140\index{samplecond@{samplecond}!bdm::mratio@{bdm::mratio}}
141\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec bdm::mpdf::samplecond (const vec \& {\em cond}, \/  double \& {\em ll})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
142\label{classbdm_1_1mpdf_e4848a428d8ef0549c6e4a9ed386d9f2}
143
144
145Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
146
147\begin{Desc}
148\item[Parameters:]
149\begin{description}
150\item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
151\end{Desc}
152
153
154Reimplemented in \hyperlink{classbdm_1_1mprod_1a37c2aaba8bde7fce5351c39b6e1168}{bdm::mprod}.
155
156References bdm::mpdf::condition(), bdm::mpdf::ep, bdm::epdf::evallog(), and bdm::epdf::sample().
157
158Referenced by bdm::MPF$<$ BM\_\-T $>$::bayes(), bdm::PF::bayes(), and bdm::ArxDS::step().\hypertarget{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}{
159\index{bdm::mratio@{bdm::mratio}!samplecond\_\-m@{samplecond\_\-m}}
160\index{samplecond\_\-m@{samplecond\_\-m}!bdm::mratio@{bdm::mratio}}
161\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
162\label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652}
163
164
165Returns.
166
167\begin{Desc}
168\item[Parameters:]
169\begin{description}
170\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
171\end{Desc}
172
173
174References bdm::mpdf::condition(), bdm::RV::count(), bdm::mpdf::ep, bdm::epdf::evallog(), bdm::mpdf::rv, and bdm::epdf::sample().
175
176The documentation for this class was generated from the following file:\begin{CompactItemize}
177\item 
178\hyperlink{emix_8h}{emix.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.