[30] | 1 | \section{bilinfn Class Reference} |
---|
| 2 | \label{classbilinfn}\index{bilinfn@{bilinfn}} |
---|
| 3 | Class representing function \$f(x,u) = Ax+Bu\$. |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | {\tt \#include $<$libFN.h$>$} |
---|
| 7 | |
---|
| 8 | Inheritance diagram for bilinfn:\nopagebreak |
---|
| 9 | \begin{figure}[H] |
---|
| 10 | \begin{center} |
---|
| 11 | \leavevmode |
---|
| 12 | \includegraphics[width=47pt]{classbilinfn__inherit__graph} |
---|
| 13 | \end{center} |
---|
| 14 | \end{figure} |
---|
| 15 | Collaboration diagram for bilinfn:\nopagebreak |
---|
| 16 | \begin{figure}[H] |
---|
| 17 | \begin{center} |
---|
| 18 | \leavevmode |
---|
| 19 | \includegraphics[width=60pt]{classbilinfn__coll__graph} |
---|
| 20 | \end{center} |
---|
| 21 | \end{figure} |
---|
| 22 | \subsection*{Public Member Functions} |
---|
| 23 | \begin{CompactItemize} |
---|
| 24 | \item |
---|
| 25 | vec {\bf eval} (const vec \&x0, const vec \&u0)\label{classbilinfn_e36a16e72e7f9fedf3cb18d2d5505a24} |
---|
| 26 | |
---|
| 27 | \begin{CompactList}\small\item\em Evaluates \$f(x0,u0)\$. \item\end{CompactList}\item |
---|
| 28 | {\bf bilinfn} (const {\bf RV} \&rvx0, const {\bf RV} \&rvu0)\label{classbilinfn_af9f36282730d910a41b95f4d1fb8221} |
---|
| 29 | |
---|
| 30 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
| 31 | \textbf{bilinfn} (const {\bf RV} \&rvx0, const {\bf RV} \&rvu0, const mat \&A0, const mat \&B0)\label{classbilinfn_c99f91d7752e131275b219df731868bd} |
---|
| 32 | |
---|
| 33 | \item |
---|
| 34 | void {\bf dfdx\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full) |
---|
| 35 | \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item |
---|
| 36 | void {\bf dfdu\_\-cond} (const vec \&x0, const vec \&u0, mat \&F, bool full=true) |
---|
| 37 | \begin{CompactList}\small\item\em Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . \item\end{CompactList}\item |
---|
| 38 | vec {\bf eval} (const vec \&cond)\label{classdiffbifn_ad7673e16aa1a046b131b24c731c4632} |
---|
| 39 | |
---|
| 40 | \begin{CompactList}\small\item\em Evaluates \$f(x0,u0)\$ (VS: Do we really need common eval? ). \item\end{CompactList}\item |
---|
| 41 | int {\bf \_\-dimx} () const \label{classdiffbifn_436de7a7301ea9eac7d6081b893bbf57} |
---|
| 42 | |
---|
| 43 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
| 44 | int {\bf \_\-dimu} () const \label{classdiffbifn_fc8779acbff170611aff0ee70cee3879} |
---|
| 45 | |
---|
| 46 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
| 47 | int {\bf \_\-dimy} () const \label{classfnc_a8891973d0ca48ce38e1886df45ca298} |
---|
| 48 | |
---|
| 49 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
---|
| 50 | \subsection*{Protected Attributes} |
---|
| 51 | \begin{CompactItemize} |
---|
| 52 | \item |
---|
| 53 | {\bf RV} \textbf{rvx}\label{classdiffbifn_bcf96b86250c3cbd465ba5ee62474b75} |
---|
| 54 | |
---|
| 55 | \item |
---|
| 56 | {\bf RV} \textbf{rvu}\label{classdiffbifn_c41c74c7942dba51ef0b0bfed963447d} |
---|
| 57 | |
---|
| 58 | \item |
---|
| 59 | int \textbf{dimx}\label{classdiffbifn_f6918bc0a9dad656b4cddc028137eb78} |
---|
| 60 | |
---|
| 61 | \item |
---|
| 62 | int \textbf{dimu}\label{classdiffbifn_2e07ce491e973f03d763e37624d0fe79} |
---|
| 63 | |
---|
| 64 | \item |
---|
| 65 | int \textbf{dimy}\label{classfnc_22d51d10a7901331167f64f80d1af8e9} |
---|
| 66 | |
---|
| 67 | \end{CompactItemize} |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | \subsection{Detailed Description} |
---|
| 71 | Class representing function \$f(x,u) = Ax+Bu\$. |
---|
| 72 | |
---|
| 73 | \subsection{Member Function Documentation} |
---|
| 74 | \index{bilinfn@{bilinfn}!dfdx_cond@{dfdx\_\-cond}} |
---|
| 75 | \index{dfdx_cond@{dfdx\_\-cond}!bilinfn@{bilinfn}} |
---|
| 76 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void bilinfn::dfdx\_\-cond (const vec \& {\em x0}, const vec \& {\em u0}, mat \& {\em A}, bool {\em full})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classbilinfn_79c022de8dbe2b054bb9cc49345f3ef5} |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | Evaluates $A=\frac{d}{dx}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . |
---|
| 80 | |
---|
| 81 | \begin{Desc} |
---|
| 82 | \item[Parameters:] |
---|
| 83 | \begin{description} |
---|
| 84 | \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \end{description} |
---|
| 85 | \end{Desc} |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | Reimplemented from {\bf diffbifn} \doxyref{}{p.}{classdiffbifn_6d217a02d4fa13931258d4bebdd0feb4}.\index{bilinfn@{bilinfn}!dfdu_cond@{dfdu\_\-cond}} |
---|
| 89 | \index{dfdu_cond@{dfdu\_\-cond}!bilinfn@{bilinfn}} |
---|
| 90 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void bilinfn::dfdu\_\-cond (const vec \& {\em x0}, const vec \& {\em u0}, mat \& {\em A}, bool {\em full} = {\tt true})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classbilinfn_90f2b15612b14883d6ed2b0e295cb82b} |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | Evaluates $A=\frac{d}{du}f(x,u)|_{x0,u0}$ and writes result into {\tt A} . |
---|
| 94 | |
---|
| 95 | \begin{Desc} |
---|
| 96 | \item[Parameters:] |
---|
| 97 | \begin{description} |
---|
| 98 | \item[{\em full}]denotes that even unchanged entries are to be rewritten. When, false only the changed elements are computed. \end{description} |
---|
| 99 | \end{Desc} |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | Reimplemented from {\bf diffbifn} \doxyref{}{p.}{classdiffbifn_1978bafd7909d15c139a08c495c24aa0}. |
---|
| 103 | |
---|
| 104 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
| 105 | \item |
---|
| 106 | work/mixpp/bdm/stat/libFN.h\item |
---|
| 107 | work/mixpp/bdm/stat/libFN.cpp\end{CompactItemize} |
---|