\hypertarget{classegiw}{ \section{egiw Class Reference} \label{classegiw}\index{egiw@{egiw}} } Gauss-inverse-Wishart density stored in LD form. {\tt \#include $<$libEF.h$>$} Inheritance diagram for egiw:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=40pt]{classegiw__inherit__graph} \end{center} \end{figure} Collaboration diagram for egiw:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=72pt]{classegiw__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classegiw_056c094f01ca1cc308d72162f47617c9}{ \hyperlink{classegiw_056c094f01ca1cc308d72162f47617c9}{egiw} (\hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}, mat V0, double nu0=-1.0)} \label{classegiw_056c094f01ca1cc308d72162f47617c9} \begin{CompactList}\small\item\em Default constructor, if nu0$<$0 a minimal nu0 will be computed. \item\end{CompactList}\item \hypertarget{classegiw_18c1bf6125652a6dcbca68dd02dddd8d}{ \hyperlink{classegiw_18c1bf6125652a6dcbca68dd02dddd8d}{egiw} (\hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}, \hyperlink{classldmat}{ldmat} V0, double nu0=-1.0)} \label{classegiw_18c1bf6125652a6dcbca68dd02dddd8d} \begin{CompactList}\small\item\em Full constructor for V in \hyperlink{classldmat}{ldmat} form. \item\end{CompactList}\item \hypertarget{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f}{ vec \hyperlink{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f}{sample} () const } \label{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f} \begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item \hypertarget{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29}{ vec \hyperlink{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29}{mean} () const } \label{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29} \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item \hypertarget{classegiw_9594f396acc5ad186d1c5b03b0745502}{ void \textbf{mean\_\-mat} (mat \&M, mat \&R) const } \label{classegiw_9594f396acc5ad186d1c5b03b0745502} \item \hypertarget{classegiw_2ab1e525d692be8272a6f383d60b94cd}{ double \hyperlink{classegiw_2ab1e525d692be8272a6f383d60b94cd}{evalpdflog\_\-nn} (const vec \&val) const } \label{classegiw_2ab1e525d692be8272a6f383d60b94cd} \begin{CompactList}\small\item\em In this instance, val= \mbox{[}theta, r\mbox{]}. For multivariate instances, it is stored columnwise val = \mbox{[}theta\_\-1 theta\_\-2 ... r\_\-1 r\_\-2 \mbox{]}. \item\end{CompactList}\item \hypertarget{classegiw_70eb1a0b88459b227f919b425b0d3359}{ double \hyperlink{classegiw_70eb1a0b88459b227f919b425b0d3359}{lognc} () const } \label{classegiw_70eb1a0b88459b227f919b425b0d3359} \begin{CompactList}\small\item\em logarithm of the normalizing constant, $\mathcal{I}$ \item\end{CompactList}\item \hypertarget{classegiw_533e792e1175bfa06d5d595dc5d080d5}{ \hyperlink{classldmat}{ldmat} \& \hyperlink{classegiw_533e792e1175bfa06d5d595dc5d080d5}{\_\-V} ()} \label{classegiw_533e792e1175bfa06d5d595dc5d080d5} \begin{CompactList}\small\item\em returns a pointer to the internal statistics. Use with Care! \item\end{CompactList}\item \hypertarget{classegiw_a46c8a206edf80b357a138d7491780c1}{ const \hyperlink{classldmat}{ldmat} \& \hyperlink{classegiw_a46c8a206edf80b357a138d7491780c1}{\_\-V} () const } \label{classegiw_a46c8a206edf80b357a138d7491780c1} \begin{CompactList}\small\item\em returns a pointer to the internal statistics. Use with Care! \item\end{CompactList}\item \hypertarget{classegiw_08029c481ff95d24f093df0573879afe}{ double \& \hyperlink{classegiw_08029c481ff95d24f093df0573879afe}{\_\-nu} ()} \label{classegiw_08029c481ff95d24f093df0573879afe} \begin{CompactList}\small\item\em returns a pointer to the internal statistics. Use with Care! \item\end{CompactList}\item \hypertarget{classegiw_5337922a83bc63e9e826e8a8613ebfe8}{ const double \& \textbf{\_\-nu} () const } \label{classegiw_5337922a83bc63e9e826e8a8613ebfe8} \item \hypertarget{classegiw_036306322a90a9977834baac07460816}{ void \hyperlink{classegiw_036306322a90a9977834baac07460816}{pow} (double p)} \label{classegiw_036306322a90a9977834baac07460816} \begin{CompactList}\small\item\em Power of the density, used e.g. to flatten the density. \item\end{CompactList}\item \hypertarget{classeEF_a89bef8996410609004fa019b5b48964}{ virtual void \hyperlink{classeEF_a89bef8996410609004fa019b5b48964}{dupdate} (mat \&v)} \label{classeEF_a89bef8996410609004fa019b5b48964} \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item \hypertarget{classepdf_76608914c3b19e150292d5c56e93e508}{ virtual mat \hyperlink{classepdf_76608914c3b19e150292d5c56e93e508}{sample\_\-m} (int N) const } \label{classepdf_76608914c3b19e150292d5c56e93e508} \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item \hypertarget{classepdf_e87dc8260a5c37bc1b03eb66174741a0}{ virtual \hyperlink{classmpdf}{mpdf} $\ast$ \hyperlink{classepdf_e87dc8260a5c37bc1b03eb66174741a0}{condition} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}) const } \label{classepdf_e87dc8260a5c37bc1b03eb66174741a0} \begin{CompactList}\small\item\em Return conditional density on the given \hyperlink{classRV}{RV}, the remaining rvs will be in conditioning. \item\end{CompactList}\item \hypertarget{classepdf_38de9f59b65ee06028554f3f74b66025}{ virtual \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classepdf_38de9f59b65ee06028554f3f74b66025}{marginal} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}) const } \label{classepdf_38de9f59b65ee06028554f3f74b66025} \begin{CompactList}\small\item\em Return marginal density on the given \hyperlink{classRV}{RV}, the remainig rvs are intergrated out. \item\end{CompactList}\item \hypertarget{classepdf_ca0d32aabb4cbba347e0c37fe8607562}{ const \hyperlink{classRV}{RV} \& \hyperlink{classepdf_ca0d32aabb4cbba347e0c37fe8607562}{\_\-rv} () const } \label{classepdf_ca0d32aabb4cbba347e0c37fe8607562} \begin{CompactList}\small\item\em access function, possibly dangerous! \item\end{CompactList}\item \hypertarget{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5}{ void \hyperlink{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5}{\_\-renewrv} (const \hyperlink{classRV}{RV} \&in\_\-rv)} \label{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5} \begin{CompactList}\small\item\em modifier function - useful when copying epdfs \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classegiw_f343d03ede89db820edf44a6297fa442}{ \hyperlink{classldmat}{ldmat} \hyperlink{classegiw_f343d03ede89db820edf44a6297fa442}{V}} \label{classegiw_f343d03ede89db820edf44a6297fa442} \begin{CompactList}\small\item\em Extended information matrix of sufficient statistics. \item\end{CompactList}\item \hypertarget{classegiw_4a2f130b91afe84f6d62fed289d5d453}{ double \hyperlink{classegiw_4a2f130b91afe84f6d62fed289d5d453}{nu}} \label{classegiw_4a2f130b91afe84f6d62fed289d5d453} \begin{CompactList}\small\item\em Number of data records (degrees of freedom) of sufficient statistics. \item\end{CompactList}\item \hypertarget{classegiw_3d5c719f15a5527a6c62c2a53160148e}{ int \hyperlink{classegiw_3d5c719f15a5527a6c62c2a53160148e}{xdim}} \label{classegiw_3d5c719f15a5527a6c62c2a53160148e} \begin{CompactList}\small\item\em Dimension of the output. \item\end{CompactList}\item \hypertarget{classegiw_c70d13d86e0d9f0acede3e1dc0368812}{ int \hyperlink{classegiw_c70d13d86e0d9f0acede3e1dc0368812}{nPsi}} \label{classegiw_c70d13d86e0d9f0acede3e1dc0368812} \begin{CompactList}\small\item\em Dimension of the regressor. \item\end{CompactList}\item \hypertarget{classepdf_74da992e3f5d598da8850b646b79b9d9}{ \hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}} \label{classepdf_74da992e3f5d598da8850b646b79b9d9} \begin{CompactList}\small\item\em Identified of the random variable. \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Gauss-inverse-Wishart density stored in LD form. For $p$-variate densities, given rv.count() should be $p\times$ V.rows(). The documentation for this class was generated from the following files:\begin{CompactItemize} \item work/git/mixpp/bdm/stat/\hyperlink{libEF_8h}{libEF.h}\item work/git/mixpp/bdm/stat/libEF.cpp\end{CompactItemize}