1 | \hypertarget{classegiw}{ |
---|
2 | \section{egiw Class Reference} |
---|
3 | \label{classegiw}\index{egiw@{egiw}} |
---|
4 | } |
---|
5 | Gauss-inverse-Wishart density stored in LD form. |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$libEF.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for egiw:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=40pt]{classegiw__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for egiw:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=72pt]{classegiw__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classegiw_c52a2173c6eb1490edce9c6c7c05d60b}{ |
---|
28 | \hyperlink{classegiw_c52a2173c6eb1490edce9c6c7c05d60b}{egiw} (\hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}, mat V0, double nu0)} |
---|
29 | \label{classegiw_c52a2173c6eb1490edce9c6c7c05d60b} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Default constructor, assuming. \item\end{CompactList}\item |
---|
32 | \hypertarget{classegiw_1a17fdbac6c72b9c3abb97623db466c8}{ |
---|
33 | \hyperlink{classegiw_1a17fdbac6c72b9c3abb97623db466c8}{egiw} (\hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}, \hyperlink{classldmat}{ldmat} V0, double nu0)} |
---|
34 | \label{classegiw_1a17fdbac6c72b9c3abb97623db466c8} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Full constructor for V in \hyperlink{classldmat}{ldmat} form. \item\end{CompactList}\item |
---|
37 | \hypertarget{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f}{ |
---|
38 | vec \hyperlink{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f}{sample} () const } |
---|
39 | \label{classegiw_3d2c1f2ba0f9966781f1e0ae695e8a6f} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item |
---|
42 | \hypertarget{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29}{ |
---|
43 | vec \hyperlink{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29}{mean} () const } |
---|
44 | \label{classegiw_6deb0ff2859f41ef7cbdf6a842cabb29} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item |
---|
47 | \hypertarget{classegiw_9594f396acc5ad186d1c5b03b0745502}{ |
---|
48 | void \textbf{mean\_\-mat} (mat \&M, mat \&R) const } |
---|
49 | \label{classegiw_9594f396acc5ad186d1c5b03b0745502} |
---|
50 | |
---|
51 | \item |
---|
52 | \hypertarget{classegiw_2ab1e525d692be8272a6f383d60b94cd}{ |
---|
53 | double \hyperlink{classegiw_2ab1e525d692be8272a6f383d60b94cd}{evalpdflog\_\-nn} (const vec \&val) const } |
---|
54 | \label{classegiw_2ab1e525d692be8272a6f383d60b94cd} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em In this instance, val= \mbox{[}theta, r\mbox{]}. For multivariate instances, it is stored columnwise val = \mbox{[}theta\_\-1 theta\_\-2 ... r\_\-1 r\_\-2 \mbox{]}. \item\end{CompactList}\item |
---|
57 | \hypertarget{classegiw_70eb1a0b88459b227f919b425b0d3359}{ |
---|
58 | double \hyperlink{classegiw_70eb1a0b88459b227f919b425b0d3359}{lognc} () const } |
---|
59 | \label{classegiw_70eb1a0b88459b227f919b425b0d3359} |
---|
60 | |
---|
61 | \begin{CompactList}\small\item\em logarithm of the normalizing constant, $\mathcal{I}$ \item\end{CompactList}\item |
---|
62 | \hypertarget{classegiw_533e792e1175bfa06d5d595dc5d080d5}{ |
---|
63 | \hyperlink{classldmat}{ldmat} \& \hyperlink{classegiw_533e792e1175bfa06d5d595dc5d080d5}{\_\-V} ()} |
---|
64 | \label{classegiw_533e792e1175bfa06d5d595dc5d080d5} |
---|
65 | |
---|
66 | \begin{CompactList}\small\item\em returns a pointer to the internal statistics. Use with Care! \item\end{CompactList}\item |
---|
67 | \hypertarget{classegiw_08029c481ff95d24f093df0573879afe}{ |
---|
68 | double \& \hyperlink{classegiw_08029c481ff95d24f093df0573879afe}{\_\-nu} ()} |
---|
69 | \label{classegiw_08029c481ff95d24f093df0573879afe} |
---|
70 | |
---|
71 | \begin{CompactList}\small\item\em returns a pointer to the internal statistics. Use with Care! \item\end{CompactList}\item |
---|
72 | \hypertarget{classegiw_036306322a90a9977834baac07460816}{ |
---|
73 | void \hyperlink{classegiw_036306322a90a9977834baac07460816}{pow} (double p)} |
---|
74 | \label{classegiw_036306322a90a9977834baac07460816} |
---|
75 | |
---|
76 | \begin{CompactList}\small\item\em Power of the density, used e.g. to flatten the density. \item\end{CompactList}\item |
---|
77 | \hypertarget{classeEF_a89bef8996410609004fa019b5b48964}{ |
---|
78 | virtual void \hyperlink{classeEF_a89bef8996410609004fa019b5b48964}{dupdate} (mat \&v)} |
---|
79 | \label{classeEF_a89bef8996410609004fa019b5b48964} |
---|
80 | |
---|
81 | \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item |
---|
82 | \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ |
---|
83 | virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } |
---|
84 | \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} |
---|
85 | |
---|
86 | \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item |
---|
87 | \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ |
---|
88 | virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } |
---|
89 | \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} |
---|
90 | |
---|
91 | \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item |
---|
92 | \hypertarget{classepdf_54d7dd53a641b618771cd9bee135181f}{ |
---|
93 | virtual mat \hyperlink{classepdf_54d7dd53a641b618771cd9bee135181f}{sampleN} (int N) const } |
---|
94 | \label{classepdf_54d7dd53a641b618771cd9bee135181f} |
---|
95 | |
---|
96 | \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item |
---|
97 | \hypertarget{classepdf_3ea597362e11a0040fe7c990269d072c}{ |
---|
98 | virtual double \hyperlink{classepdf_3ea597362e11a0040fe7c990269d072c}{eval} (const vec \&val) const } |
---|
99 | \label{classepdf_3ea597362e11a0040fe7c990269d072c} |
---|
100 | |
---|
101 | \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\item |
---|
102 | \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ |
---|
103 | virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } |
---|
104 | \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} |
---|
105 | |
---|
106 | \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item |
---|
107 | \hypertarget{classepdf_3ba08c0e788deff22134c049b9269666}{ |
---|
108 | \hyperlink{classmpdf}{mpdf} $\ast$ \hyperlink{classepdf_3ba08c0e788deff22134c049b9269666}{condition} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv})} |
---|
109 | \label{classepdf_3ba08c0e788deff22134c049b9269666} |
---|
110 | |
---|
111 | \begin{CompactList}\small\item\em Return conditional density on the given \hyperlink{classRV}{RV}, the remaining rvs will be in conditioning. \item\end{CompactList}\item |
---|
112 | \hypertarget{classepdf_bc0c171b6dafacd78d26263913b1d0c0}{ |
---|
113 | \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classepdf_bc0c171b6dafacd78d26263913b1d0c0}{marginal} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv})} |
---|
114 | \label{classepdf_bc0c171b6dafacd78d26263913b1d0c0} |
---|
115 | |
---|
116 | \begin{CompactList}\small\item\em Return marginal density on the given \hyperlink{classRV}{RV}, the remainig rvs are intergrated out. \item\end{CompactList}\item |
---|
117 | \hypertarget{classepdf_ca0d32aabb4cbba347e0c37fe8607562}{ |
---|
118 | const \hyperlink{classRV}{RV} \& \hyperlink{classepdf_ca0d32aabb4cbba347e0c37fe8607562}{\_\-rv} () const } |
---|
119 | \label{classepdf_ca0d32aabb4cbba347e0c37fe8607562} |
---|
120 | |
---|
121 | \begin{CompactList}\small\item\em access function, possibly dangerous! \item\end{CompactList}\item |
---|
122 | \hypertarget{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5}{ |
---|
123 | void \hyperlink{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5}{\_\-renewrv} (const \hyperlink{classRV}{RV} \&in\_\-rv)} |
---|
124 | \label{classepdf_7fb94ce90d1ac7077d29f7d6a6c3e0a5} |
---|
125 | |
---|
126 | \begin{CompactList}\small\item\em modifier function - useful when copying epdfs \item\end{CompactList}\end{CompactItemize} |
---|
127 | \subsection*{Protected Attributes} |
---|
128 | \begin{CompactItemize} |
---|
129 | \item |
---|
130 | \hypertarget{classegiw_f343d03ede89db820edf44a6297fa442}{ |
---|
131 | \hyperlink{classldmat}{ldmat} \hyperlink{classegiw_f343d03ede89db820edf44a6297fa442}{V}} |
---|
132 | \label{classegiw_f343d03ede89db820edf44a6297fa442} |
---|
133 | |
---|
134 | \begin{CompactList}\small\item\em Extended information matrix of sufficient statistics. \item\end{CompactList}\item |
---|
135 | \hypertarget{classegiw_4a2f130b91afe84f6d62fed289d5d453}{ |
---|
136 | double \hyperlink{classegiw_4a2f130b91afe84f6d62fed289d5d453}{nu}} |
---|
137 | \label{classegiw_4a2f130b91afe84f6d62fed289d5d453} |
---|
138 | |
---|
139 | \begin{CompactList}\small\item\em Number of data records (degrees of freedom) of sufficient statistics. \item\end{CompactList}\item |
---|
140 | \hypertarget{classegiw_3d5c719f15a5527a6c62c2a53160148e}{ |
---|
141 | int \hyperlink{classegiw_3d5c719f15a5527a6c62c2a53160148e}{xdim}} |
---|
142 | \label{classegiw_3d5c719f15a5527a6c62c2a53160148e} |
---|
143 | |
---|
144 | \begin{CompactList}\small\item\em Dimension of the output. \item\end{CompactList}\item |
---|
145 | \hypertarget{classegiw_c70d13d86e0d9f0acede3e1dc0368812}{ |
---|
146 | int \hyperlink{classegiw_c70d13d86e0d9f0acede3e1dc0368812}{nPsi}} |
---|
147 | \label{classegiw_c70d13d86e0d9f0acede3e1dc0368812} |
---|
148 | |
---|
149 | \begin{CompactList}\small\item\em Dimension of the regressor. \item\end{CompactList}\item |
---|
150 | \hypertarget{classepdf_74da992e3f5d598da8850b646b79b9d9}{ |
---|
151 | \hyperlink{classRV}{RV} \hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}} |
---|
152 | \label{classepdf_74da992e3f5d598da8850b646b79b9d9} |
---|
153 | |
---|
154 | \begin{CompactList}\small\item\em Identified of the random variable. \item\end{CompactList}\end{CompactItemize} |
---|
155 | |
---|
156 | |
---|
157 | \subsection{Detailed Description} |
---|
158 | Gauss-inverse-Wishart density stored in LD form. |
---|
159 | |
---|
160 | For $p$-variate densities, given rv.count() should be $p\times$ V.rows(). |
---|
161 | |
---|
162 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
163 | \item |
---|
164 | work/git/mixpp/bdm/stat/\hyperlink{libEF_8h}{libEF.h}\item |
---|
165 | work/git/mixpp/bdm/stat/libEF.cpp\end{CompactItemize} |
---|