root/doc/latex/classfsqmat.tex @ 270

Revision 270, 13.1 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

  • Property svn:eol-style set to native
RevLine 
[172]1\hypertarget{classfsqmat}{
[8]2\section{fsqmat Class Reference}
3\label{classfsqmat}\index{fsqmat@{fsqmat}}
[172]4}
[8]5{\tt \#include $<$libDC.h$>$}
6
[19]7Inheritance diagram for fsqmat:\nopagebreak
8\begin{figure}[H]
[8]9\begin{center}
10\leavevmode
[261]11\includegraphics[width=47pt]{classfsqmat__inherit__graph}
[8]12\end{center}
13\end{figure}
[270]14
15
16\subsection{Detailed Description}
17Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix.
18
19This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices; \subsection*{Public Member Functions}
[22]20\begin{CompactItemize}
21\item 
[172]22void \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{opupdt} (const vec \&v, double w)
[22]23\item 
[172]24\hypertarget{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{
25mat \hyperlink{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{to\_\-mat} () const }
26\label{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}
[8]27
[22]28\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
[172]29void \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{mult\_\-sym} (const mat \&C)
[79]30\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
[172]31void \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{mult\_\-sym\_\-t} (const mat \&C)
[79]32\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
[172]33\hypertarget{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{
34void \hyperlink{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{mult\_\-sym} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const }
35\label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}
[8]36
[79]37\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix $U$ \item\end{CompactList}\item 
[172]38\hypertarget{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{
39void \hyperlink{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const }
40\label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}
[32]41
[79]42\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix $U$ \item\end{CompactList}\item 
[172]43\hypertarget{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{
44void \hyperlink{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{clear} ()}
45\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
[22]46
47\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
[172]48\hypertarget{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{
49\hyperlink{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{fsqmat} ()}
50\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}
[32]51
52\begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item 
[172]53\hypertarget{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{
54\hyperlink{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{fsqmat} (const int dim0)}
55\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f}
[32]56
57\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 
[172]58\hypertarget{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{
59\hyperlink{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{fsqmat} (const mat \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M})}
60\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
[22]61
62\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
[210]63\hypertarget{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{
64\hyperlink{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{fsqmat} (const \hyperlink{classfsqmat}{fsqmat} \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}, const ivec \&perm)}
65\label{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}
66
67\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
[172]68\hypertarget{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{
69\hyperlink{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{fsqmat} (const vec \&d)}
70\label{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}
[79]71
72\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
[172]73\hypertarget{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{
74virtual \hyperlink{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{$\sim$fsqmat} ()}
75\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}
[32]76
77\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
[172]78virtual void \hyperlink{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{inv} (\hyperlink{classfsqmat}{fsqmat} \&Inv)
[22]79\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
[172]80\hypertarget{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{
81double \hyperlink{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{logdet} () const }
82\label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}
[22]83
84\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
[172]85\hypertarget{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{
86double \hyperlink{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{qform} (const vec \&v) const }
87\label{classfsqmat_a6c91b0389e73404324b2314b08d6e87}
[22]88
[79]89\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
[172]90\hypertarget{classfsqmat_58075da64ddadd4df40654c35b928c6f}{
91double \hyperlink{classfsqmat_58075da64ddadd4df40654c35b928c6f}{invqform} (const vec \&v) const }
92\label{classfsqmat_58075da64ddadd4df40654c35b928c6f}
[79]93
94\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
[172]95vec \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{sqrt\_\-mult} (const vec \&v) const
[79]96\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
[172]97\hypertarget{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{
98void \hyperlink{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{add} (const \hyperlink{classfsqmat}{fsqmat} \&fsq2, double w=1.0)}
99\label{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}
[91]100
101\begin{CompactList}\small\item\em Add another matrix in fsq form with weight w. \item\end{CompactList}\item 
[172]102\hypertarget{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{
103void \hyperlink{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{setD} (const vec \&nD)}
104\label{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}
[79]105
106\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
[172]107\hypertarget{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{
108vec \hyperlink{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{getD} ()}
109\label{classfsqmat_bcf837b2956745e8986044f5600dbd6e}
[79]110
111\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
[172]112\hypertarget{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{
113void \hyperlink{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{setD} (const vec \&nD, int i)}
114\label{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}
[79]115
116\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
[172]117\hypertarget{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{
118\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{operator+=} (const \hyperlink{classfsqmat}{fsqmat} \&A)}
119\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
[22]120
[172]121\begin{CompactList}\small\item\em add another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item 
122\hypertarget{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{
123\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{operator-=} (const \hyperlink{classfsqmat}{fsqmat} \&A)}
124\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
[22]125
[172]126\begin{CompactList}\small\item\em subtrack another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item 
127\hypertarget{classfsqmat_af800e7b2146da5e60897255dde80059}{
128\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_af800e7b2146da5e60897255dde80059}{operator$\ast$=} (double x)}
129\label{classfsqmat_af800e7b2146da5e60897255dde80059}
[22]130
[33]131\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item 
[172]132\hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{
133int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const }
134\label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
[28]135
[172]136\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
137\hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{
138int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const }
139\label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
[28]140
[172]141\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\end{CompactItemize}
[22]142\subsection*{Protected Attributes}
143\begin{CompactItemize}
144\item 
[172]145\hypertarget{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{
146mat \hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}}
147\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
[22]148
[33]149\begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item 
[172]150\hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{
151int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}}
152\label{classsqmat_0abed904bdc0882373ba9adba919689d}
[28]153
[33]154\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
[32]155\subsection*{Friends}
156\begin{CompactItemize}
157\item 
[172]158\hypertarget{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{
159std::ostream \& \hyperlink{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classfsqmat}{fsqmat} \&sq)}
160\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}
[22]161
[33]162\begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize}
[22]163
[32]164
[22]165\subsection{Member Function Documentation}
[172]166\hypertarget{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{
[22]167\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
168\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
[172]169\subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
170\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
[22]171
172
[79]173Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
[22]174\item[Parameters:]
175\begin{description}
176\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
177\end{Desc}
178BLAS-2b operation.
179
[172]180Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}.
[91]181
[172]182References M.\hypertarget{classfsqmat_5530d2756b5d991de755e6121c9a452e}{
183\index{fsqmat@{fsqmat}!mult\_\-sym@{mult\_\-sym}}
[91]184\index{mult\_\-sym@{mult\_\-sym}!fsqmat@{fsqmat}}
[172]185\subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
186\label{classfsqmat_5530d2756b5d991de755e6121c9a452e}
[22]187
188
[79]189Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
[22]190
191\begin{Desc}
192\item[Parameters:]
193\begin{description}
[32]194\item[{\em C}]multiplying matrix, \end{description}
[22]195\end{Desc}
196
197
[172]198Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}.
[91]199
200References M.
201
[255]202Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes().\hypertarget{classfsqmat_92052a8adc2054b63e42d1373d145c89}{
[172]203\index{fsqmat@{fsqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
[91]204\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}}
[172]205\subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
206\label{classfsqmat_92052a8adc2054b63e42d1373d145c89}
[32]207
208
[79]209Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
[32]210
211\begin{Desc}
212\item[Parameters:]
213\begin{description}
214\item[{\em C}]multiplying matrix, \end{description}
215\end{Desc}
216
217
[172]218Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}.
[91]219
[172]220References M.\hypertarget{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{
221\index{fsqmat@{fsqmat}!inv@{inv}}
[22]222\index{inv@{inv}!fsqmat@{fsqmat}}
[172]223\subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
224\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
[22]225
226
227Matrix inversion preserving the chosen form.
228
229\begin{Desc}
230\item[Parameters:]
231\begin{description}
232\item[{\em Inv}]a space where the inverse is stored. \end{description}
233\end{Desc}
[91]234
235
236References M.
237
[255]238Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes(), and bdm::egiw::evallog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{
[172]239\index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
[91]240\index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
[172]241\subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
242\label{classfsqmat_842a774077ee34ac3c36d180ab33e103}
[22]243
244
[79]245Multiplies square root of $V$ by vector $x$.
[22]246
247Used e.g. in generating normal samples.
248
[172]249Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}.
[22]250
[91]251References M.
252
[28]253The documentation for this class was generated from the following files:\begin{CompactItemize}
[8]254\item 
[261]255\hyperlink{libDC_8h}{libDC.h}\item 
256libDC.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.