[172] | 1 | \hypertarget{classfsqmat}{ |
---|
[8] | 2 | \section{fsqmat Class Reference} |
---|
| 3 | \label{classfsqmat}\index{fsqmat@{fsqmat}} |
---|
[172] | 4 | } |
---|
[8] | 5 | {\tt \#include $<$libDC.h$>$} |
---|
| 6 | |
---|
[19] | 7 | Inheritance diagram for fsqmat:\nopagebreak |
---|
| 8 | \begin{figure}[H] |
---|
[8] | 9 | \begin{center} |
---|
| 10 | \leavevmode |
---|
[261] | 11 | \includegraphics[width=47pt]{classfsqmat__inherit__graph} |
---|
[8] | 12 | \end{center} |
---|
| 13 | \end{figure} |
---|
[270] | 14 | |
---|
| 15 | |
---|
| 16 | \subsection{Detailed Description} |
---|
| 17 | Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix. |
---|
| 18 | |
---|
| 19 | This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices; \subsection*{Public Member Functions} |
---|
[22] | 20 | \begin{CompactItemize} |
---|
| 21 | \item |
---|
[172] | 22 | void \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{opupdt} (const vec \&v, double w) |
---|
[22] | 23 | \item |
---|
[172] | 24 | \hypertarget{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{ |
---|
| 25 | mat \hyperlink{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{to\_\-mat} () const } |
---|
| 26 | \label{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3} |
---|
[8] | 27 | |
---|
[22] | 28 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
[172] | 29 | void \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{mult\_\-sym} (const mat \&C) |
---|
[79] | 30 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item |
---|
[172] | 31 | void \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{mult\_\-sym\_\-t} (const mat \&C) |
---|
[79] | 32 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item |
---|
[172] | 33 | \hypertarget{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{ |
---|
| 34 | void \hyperlink{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{mult\_\-sym} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const } |
---|
| 35 | \label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3} |
---|
[8] | 36 | |
---|
[79] | 37 | \begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix $U$ \item\end{CompactList}\item |
---|
[172] | 38 | \hypertarget{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{ |
---|
| 39 | void \hyperlink{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const } |
---|
| 40 | \label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a} |
---|
[32] | 41 | |
---|
[79] | 42 | \begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix $U$ \item\end{CompactList}\item |
---|
[172] | 43 | \hypertarget{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{ |
---|
| 44 | void \hyperlink{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{clear} ()} |
---|
| 45 | \label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4} |
---|
[22] | 46 | |
---|
| 47 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
[172] | 48 | \hypertarget{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{ |
---|
| 49 | \hyperlink{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{fsqmat} ()} |
---|
| 50 | \label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940} |
---|
[32] | 51 | |
---|
| 52 | \begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item |
---|
[172] | 53 | \hypertarget{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{ |
---|
| 54 | \hyperlink{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{fsqmat} (const int dim0)} |
---|
| 55 | \label{classfsqmat_40eae99305e7c7240fa95cfec125b06f} |
---|
[32] | 56 | |
---|
| 57 | \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item |
---|
[172] | 58 | \hypertarget{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{ |
---|
| 59 | \hyperlink{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{fsqmat} (const mat \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M})} |
---|
| 60 | \label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} |
---|
[22] | 61 | |
---|
| 62 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
[210] | 63 | \hypertarget{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{ |
---|
| 64 | \hyperlink{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{fsqmat} (const \hyperlink{classfsqmat}{fsqmat} \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}, const ivec \&perm)} |
---|
| 65 | \label{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab} |
---|
| 66 | |
---|
| 67 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
[172] | 68 | \hypertarget{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{ |
---|
| 69 | \hyperlink{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{fsqmat} (const vec \&d)} |
---|
| 70 | \label{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e} |
---|
[79] | 71 | |
---|
| 72 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
[172] | 73 | \hypertarget{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{ |
---|
| 74 | virtual \hyperlink{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{$\sim$fsqmat} ()} |
---|
| 75 | \label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e} |
---|
[32] | 76 | |
---|
| 77 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
[172] | 78 | virtual void \hyperlink{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{inv} (\hyperlink{classfsqmat}{fsqmat} \&Inv) |
---|
[22] | 79 | \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item |
---|
[172] | 80 | \hypertarget{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{ |
---|
| 81 | double \hyperlink{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{logdet} () const } |
---|
| 82 | \label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5} |
---|
[22] | 83 | |
---|
| 84 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
[172] | 85 | \hypertarget{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{ |
---|
| 86 | double \hyperlink{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{qform} (const vec \&v) const } |
---|
| 87 | \label{classfsqmat_a6c91b0389e73404324b2314b08d6e87} |
---|
[22] | 88 | |
---|
[79] | 89 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item |
---|
[172] | 90 | \hypertarget{classfsqmat_58075da64ddadd4df40654c35b928c6f}{ |
---|
| 91 | double \hyperlink{classfsqmat_58075da64ddadd4df40654c35b928c6f}{invqform} (const vec \&v) const } |
---|
| 92 | \label{classfsqmat_58075da64ddadd4df40654c35b928c6f} |
---|
[79] | 93 | |
---|
| 94 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item |
---|
[172] | 95 | vec \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{sqrt\_\-mult} (const vec \&v) const |
---|
[79] | 96 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item |
---|
[172] | 97 | \hypertarget{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{ |
---|
| 98 | void \hyperlink{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{add} (const \hyperlink{classfsqmat}{fsqmat} \&fsq2, double w=1.0)} |
---|
| 99 | \label{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f} |
---|
[91] | 100 | |
---|
| 101 | \begin{CompactList}\small\item\em Add another matrix in fsq form with weight w. \item\end{CompactList}\item |
---|
[172] | 102 | \hypertarget{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{ |
---|
| 103 | void \hyperlink{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{setD} (const vec \&nD)} |
---|
| 104 | \label{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105} |
---|
[79] | 105 | |
---|
| 106 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 107 | \hypertarget{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{ |
---|
| 108 | vec \hyperlink{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{getD} ()} |
---|
| 109 | \label{classfsqmat_bcf837b2956745e8986044f5600dbd6e} |
---|
[79] | 110 | |
---|
| 111 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 112 | \hypertarget{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{ |
---|
| 113 | void \hyperlink{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{setD} (const vec \&nD, int i)} |
---|
| 114 | \label{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad} |
---|
[79] | 115 | |
---|
| 116 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 117 | \hypertarget{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{ |
---|
| 118 | \hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{operator+=} (const \hyperlink{classfsqmat}{fsqmat} \&A)} |
---|
| 119 | \label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} |
---|
[22] | 120 | |
---|
[172] | 121 | \begin{CompactList}\small\item\em add another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item |
---|
| 122 | \hypertarget{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{ |
---|
| 123 | \hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{operator-=} (const \hyperlink{classfsqmat}{fsqmat} \&A)} |
---|
| 124 | \label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7} |
---|
[22] | 125 | |
---|
[172] | 126 | \begin{CompactList}\small\item\em subtrack another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item |
---|
| 127 | \hypertarget{classfsqmat_af800e7b2146da5e60897255dde80059}{ |
---|
| 128 | \hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_af800e7b2146da5e60897255dde80059}{operator$\ast$=} (double x)} |
---|
| 129 | \label{classfsqmat_af800e7b2146da5e60897255dde80059} |
---|
[22] | 130 | |
---|
[33] | 131 | \begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item |
---|
[172] | 132 | \hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{ |
---|
| 133 | int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const } |
---|
| 134 | \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} |
---|
[28] | 135 | |
---|
[172] | 136 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item |
---|
| 137 | \hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{ |
---|
| 138 | int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const } |
---|
| 139 | \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} |
---|
[28] | 140 | |
---|
[172] | 141 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\end{CompactItemize} |
---|
[22] | 142 | \subsection*{Protected Attributes} |
---|
| 143 | \begin{CompactItemize} |
---|
| 144 | \item |
---|
[172] | 145 | \hypertarget{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{ |
---|
| 146 | mat \hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}} |
---|
| 147 | \label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} |
---|
[22] | 148 | |
---|
[33] | 149 | \begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item |
---|
[172] | 150 | \hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{ |
---|
| 151 | int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}} |
---|
| 152 | \label{classsqmat_0abed904bdc0882373ba9adba919689d} |
---|
[28] | 153 | |
---|
[33] | 154 | \begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} |
---|
[32] | 155 | \subsection*{Friends} |
---|
| 156 | \begin{CompactItemize} |
---|
| 157 | \item |
---|
[172] | 158 | \hypertarget{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{ |
---|
| 159 | std::ostream \& \hyperlink{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classfsqmat}{fsqmat} \&sq)} |
---|
| 160 | \label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f} |
---|
[22] | 161 | |
---|
[33] | 162 | \begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize} |
---|
[22] | 163 | |
---|
[32] | 164 | |
---|
[22] | 165 | \subsection{Member Function Documentation} |
---|
[172] | 166 | \hypertarget{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{ |
---|
[22] | 167 | \index{fsqmat@{fsqmat}!opupdt@{opupdt}} |
---|
| 168 | \index{opupdt@{opupdt}!fsqmat@{fsqmat}} |
---|
[172] | 169 | \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 170 | \label{classfsqmat_b36530e155667fe9f1bd58394e50c65a} |
---|
[22] | 171 | |
---|
| 172 | |
---|
[79] | 173 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} |
---|
[22] | 174 | \item[Parameters:] |
---|
| 175 | \begin{description} |
---|
| 176 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
| 177 | \end{Desc} |
---|
| 178 | BLAS-2b operation. |
---|
| 179 | |
---|
[172] | 180 | Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. |
---|
[91] | 181 | |
---|
[172] | 182 | References M.\hypertarget{classfsqmat_5530d2756b5d991de755e6121c9a452e}{ |
---|
| 183 | \index{fsqmat@{fsqmat}!mult\_\-sym@{mult\_\-sym}} |
---|
[91] | 184 | \index{mult\_\-sym@{mult\_\-sym}!fsqmat@{fsqmat}} |
---|
[172] | 185 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 186 | \label{classfsqmat_5530d2756b5d991de755e6121c9a452e} |
---|
[22] | 187 | |
---|
| 188 | |
---|
[79] | 189 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. |
---|
[22] | 190 | |
---|
| 191 | \begin{Desc} |
---|
| 192 | \item[Parameters:] |
---|
| 193 | \begin{description} |
---|
[32] | 194 | \item[{\em C}]multiplying matrix, \end{description} |
---|
[22] | 195 | \end{Desc} |
---|
| 196 | |
---|
| 197 | |
---|
[172] | 198 | Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}. |
---|
[91] | 199 | |
---|
| 200 | References M. |
---|
| 201 | |
---|
[255] | 202 | Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes().\hypertarget{classfsqmat_92052a8adc2054b63e42d1373d145c89}{ |
---|
[172] | 203 | \index{fsqmat@{fsqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
[91] | 204 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}} |
---|
[172] | 205 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 206 | \label{classfsqmat_92052a8adc2054b63e42d1373d145c89} |
---|
[32] | 207 | |
---|
| 208 | |
---|
[79] | 209 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. |
---|
[32] | 210 | |
---|
| 211 | \begin{Desc} |
---|
| 212 | \item[Parameters:] |
---|
| 213 | \begin{description} |
---|
| 214 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 215 | \end{Desc} |
---|
| 216 | |
---|
| 217 | |
---|
[172] | 218 | Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}. |
---|
[91] | 219 | |
---|
[172] | 220 | References M.\hypertarget{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{ |
---|
| 221 | \index{fsqmat@{fsqmat}!inv@{inv}} |
---|
[22] | 222 | \index{inv@{inv}!fsqmat@{fsqmat}} |
---|
[172] | 223 | \subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 224 | \label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1} |
---|
[22] | 225 | |
---|
| 226 | |
---|
| 227 | Matrix inversion preserving the chosen form. |
---|
| 228 | |
---|
| 229 | \begin{Desc} |
---|
| 230 | \item[Parameters:] |
---|
| 231 | \begin{description} |
---|
| 232 | \item[{\em Inv}]a space where the inverse is stored. \end{description} |
---|
| 233 | \end{Desc} |
---|
[91] | 234 | |
---|
| 235 | |
---|
| 236 | References M. |
---|
| 237 | |
---|
[255] | 238 | Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes(), and bdm::egiw::evallog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{ |
---|
[172] | 239 | \index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}} |
---|
[91] | 240 | \index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} |
---|
[172] | 241 | \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} |
---|
| 242 | \label{classfsqmat_842a774077ee34ac3c36d180ab33e103} |
---|
[22] | 243 | |
---|
| 244 | |
---|
[79] | 245 | Multiplies square root of $V$ by vector $x$. |
---|
[22] | 246 | |
---|
| 247 | Used e.g. in generating normal samples. |
---|
| 248 | |
---|
[172] | 249 | Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}. |
---|
[22] | 250 | |
---|
[91] | 251 | References M. |
---|
| 252 | |
---|
[28] | 253 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
[8] | 254 | \item |
---|
[261] | 255 | \hyperlink{libDC_8h}{libDC.h}\item |
---|
| 256 | libDC.cpp\end{CompactItemize} |
---|