root/doc/latex/classfsqmat.tex @ 33

Revision 33, 8.2 kB (checked in by smidl, 17 years ago)

Oprava PF a MPF + jejich implementace pro pmsm system

  • Property svn:eol-style set to native
RevLine 
[8]1\section{fsqmat Class Reference}
2\label{classfsqmat}\index{fsqmat@{fsqmat}}
3Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. 
4
5
6{\tt \#include $<$libDC.h$>$}
7
[19]8Inheritance diagram for fsqmat:\nopagebreak
9\begin{figure}[H]
[8]10\begin{center}
11\leavevmode
[19]12\includegraphics[width=47pt]{classfsqmat__inherit__graph}
[8]13\end{center}
14\end{figure}
[19]15Collaboration diagram for fsqmat:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=47pt]{classfsqmat__coll__graph}
20\end{center}
21\end{figure}
[22]22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25void {\bf opupdt} (const vec \&v, double w)
26\item 
27mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8}
[8]28
[22]29\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
[32]30void {\bf mult\_\-sym} (const mat \&C)
[22]31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 
[32]32void {\bf mult\_\-sym\_\-t} (const mat \&C)
33\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item 
[33]34void {\bf mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}
[8]35
[33]36\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix \$U\$ \item\end{CompactList}\item 
37void {\bf mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}
[32]38
[33]39\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix \$U\$ \item\end{CompactList}\item 
[22]40void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
41
42\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
[32]43{\bf fsqmat} ()\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}
44
45\begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item 
46{\bf fsqmat} (const int dim0)\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f}
47
48\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 
[33]49{\bf fsqmat} (const mat \&{\bf M})\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
[22]50
51\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
[32]52virtual {\bf $\sim$fsqmat} ()\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}
53
54\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
[28]55virtual void {\bf inv} ({\bf fsqmat} \&Inv)
[22]56\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
[32]57double {\bf logdet} () const \label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}
[22]58
59\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
[33]60double {\bf qform} (const vec \&v) const \label{classfsqmat_a6c91b0389e73404324b2314b08d6e87}
[22]61
62\begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item 
[33]63vec {\bf sqrt\_\-mult} (const vec \&v) const
[22]64\begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item 
[33]65{\bf fsqmat} \& {\bf operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
[22]66
[33]67\begin{CompactList}\small\item\em add another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item 
68{\bf fsqmat} \& {\bf operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
[22]69
[33]70\begin{CompactList}\small\item\em subtrack another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item 
71{\bf fsqmat} \& {\bf operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7}
[22]72
[33]73\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item 
[28]74int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
75
76\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 
77int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
78
79\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize}
[22]80\subsection*{Protected Attributes}
81\begin{CompactItemize}
82\item 
[33]83mat {\bf M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
[22]84
[33]85\begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item 
86int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d}
[28]87
[33]88\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
[32]89\subsection*{Friends}
90\begin{CompactItemize}
91\item 
[33]92std::ostream \& {\bf operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}
[22]93
[33]94\begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize}
[22]95
[32]96
[8]97\subsection{Detailed Description}
98Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix.
99
100This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices;
101
[22]102\subsection{Member Function Documentation}
103\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
104\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
105\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
106
107
108Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc}
109\item[Parameters:]
110\begin{description}
111\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
112\end{Desc}
113BLAS-2b operation.
114
115Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}}
116\index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}}
[32]117\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_5530d2756b5d991de755e6121c9a452e}
[22]118
119
120Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.
121
122\begin{Desc}
123\item[Parameters:]
124\begin{description}
[32]125\item[{\em C}]multiplying matrix, \end{description}
[22]126\end{Desc}
127
128
[32]129Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_60fbbfa9e483b8187c135f787ee53afa}.\index{fsqmat@{fsqmat}!mult_sym_t@{mult\_\-sym\_\-t}}
130\index{mult_sym_t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}}
131\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_92052a8adc2054b63e42d1373d145c89}
132
133
134Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$.
135
136\begin{Desc}
137\item[Parameters:]
138\begin{description}
139\item[{\em C}]multiplying matrix, \end{description}
140\end{Desc}
141
142
143Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6909e906da17725b1b80f3cae7cf3325}.\index{fsqmat@{fsqmat}!inv@{inv}}
[22]144\index{inv@{inv}!fsqmat@{fsqmat}}
[28]145\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
[22]146
147
148Matrix inversion preserving the chosen form.
149
150\begin{Desc}
151\item[Parameters:]
152\begin{description}
153\item[{\em Inv}]a space where the inverse is stored. \end{description}
154\end{Desc}
155\index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}}
156\index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
[33]157\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_842a774077ee34ac3c36d180ab33e103}
[22]158
159
160Multiplies square root of \$V\$ by vector \$x\$.
161
162Used e.g. in generating normal samples.
163
[33]164Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}.
[22]165
[28]166The documentation for this class was generated from the following files:\begin{CompactItemize}
[8]167\item 
[28]168work/mixpp/bdm/math/{\bf libDC.h}\item 
[33]169work/mixpp/bdm/math/libDC.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.