root/doc/latex/classfsqmat.tex @ 22

Revision 22, 5.5 kB (checked in by smidl, 17 years ago)

upravy Kalmana

  • Property svn:eol-style set to native
Line 
1\section{fsqmat Class Reference}
2\label{classfsqmat}\index{fsqmat@{fsqmat}}
3Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. 
4
5
6{\tt \#include $<$libDC.h$>$}
7
8Inheritance diagram for fsqmat:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=47pt]{classfsqmat__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for fsqmat:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=47pt]{classfsqmat__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25void {\bf opupdt} (const vec \&v, double w)
26\item 
27mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8}
28
29\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
30void {\bf mult\_\-sym} (const mat \&C, bool trans=false)
31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 
32void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U, bool trans=false)\label{classfsqmat_ccf5ad8fb038f82e9d2201c0606b65fa}
33
34\item 
35void \textbf{inv} ({\bf fsqmat} \&Inv)\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
36
37\item 
38void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
39
40\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
41{\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
42
43\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
44virtual void {\bf inv} ({\bf fsqmat} $\ast$Inv)
45\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
46double {\bf logdet} ()\label{classfsqmat_bf212272ec195ad2706e2bf4d8e7c9b3}
47
48\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
49double {\bf qform} (vec \&v)\label{classfsqmat_6d047b9f7a27dfc093303a13cc9b1fba}
50
51\begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item 
52vec {\bf sqrt\_\-mult} (vec \&v)
53\begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item 
54{\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
55
56\item 
57{\bf fsqmat} \& \textbf{operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
58
59\item 
60{\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7}
61
62\end{CompactItemize}
63\subsection*{Protected Attributes}
64\begin{CompactItemize}
65\item 
66mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
67
68\end{CompactItemize}
69
70
71\subsection{Detailed Description}
72Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix.
73
74This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices;
75
76\subsection{Member Function Documentation}
77\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
78\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
79\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
80
81
82Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc}
83\item[Parameters:]
84\begin{description}
85\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
86\end{Desc}
87BLAS-2b operation.
88
89Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}}
90\index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}}
91\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C}, bool {\em trans} = {\tt false})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_acc5d2d0a243f1de6d0106065f01f518}
92
93
94Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.
95
96\begin{Desc}
97\item[Parameters:]
98\begin{description}
99\item[{\em C}]multiplying matrix, \item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description}
100\end{Desc}
101
102
103Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_faa3bc90be142adde9cf74f573c70157}.\index{fsqmat@{fsqmat}!inv@{inv}}
104\index{inv@{inv}!fsqmat@{fsqmat}}
105\subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void fsqmat::inv ({\bf fsqmat} $\ast$ {\em Inv})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_788423cc2679620dd6da8d2fca2e3e4d}
106
107
108Matrix inversion preserving the chosen form.
109
110\begin{Desc}
111\item[Parameters:]
112\begin{description}
113\item[{\em Inv}]a space where the inverse is stored. \end{description}
114\end{Desc}
115\index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}}
116\index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
117\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (vec \& {\em v})\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_6648dd4291b809cce14e8497d0433ad3}
118
119
120Multiplies square root of \$V\$ by vector \$x\$.
121
122Used e.g. in generating normal samples.
123
124Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b5236c8a050199e1a9d338b0da1a08d2}.
125
126The documentation for this class was generated from the following file:\begin{CompactItemize}
127\item 
128work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.