1 | \section{fsqmat Class Reference} |
---|
2 | \label{classfsqmat}\index{fsqmat@{fsqmat}} |
---|
3 | Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libDC.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for fsqmat:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=47pt]{classfsqmat__inherit__graph} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | Collaboration diagram for fsqmat:\nopagebreak |
---|
16 | \begin{figure}[H] |
---|
17 | \begin{center} |
---|
18 | \leavevmode |
---|
19 | \includegraphics[width=47pt]{classfsqmat__coll__graph} |
---|
20 | \end{center} |
---|
21 | \end{figure} |
---|
22 | \subsection*{Public Member Functions} |
---|
23 | \begin{CompactItemize} |
---|
24 | \item |
---|
25 | void {\bf opupdt} (const vec \&v, double w) |
---|
26 | \item |
---|
27 | mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8} |
---|
28 | |
---|
29 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
30 | void {\bf mult\_\-sym} (const mat \&C, bool trans=false) |
---|
31 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item |
---|
32 | void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U, bool trans=false)\label{classfsqmat_ccf5ad8fb038f82e9d2201c0606b65fa} |
---|
33 | |
---|
34 | \item |
---|
35 | void \textbf{inv} ({\bf fsqmat} \&Inv)\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1} |
---|
36 | |
---|
37 | \item |
---|
38 | void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4} |
---|
39 | |
---|
40 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
41 | {\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} |
---|
42 | |
---|
43 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
---|
44 | virtual void {\bf inv} ({\bf fsqmat} $\ast$Inv) |
---|
45 | \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item |
---|
46 | double {\bf logdet} ()\label{classfsqmat_bf212272ec195ad2706e2bf4d8e7c9b3} |
---|
47 | |
---|
48 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
49 | double {\bf qform} (vec \&v)\label{classfsqmat_6d047b9f7a27dfc093303a13cc9b1fba} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item |
---|
52 | vec {\bf sqrt\_\-mult} (vec \&v) |
---|
53 | \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item |
---|
54 | {\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} |
---|
55 | |
---|
56 | \item |
---|
57 | {\bf fsqmat} \& \textbf{operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7} |
---|
58 | |
---|
59 | \item |
---|
60 | {\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7} |
---|
61 | |
---|
62 | \end{CompactItemize} |
---|
63 | \subsection*{Protected Attributes} |
---|
64 | \begin{CompactItemize} |
---|
65 | \item |
---|
66 | mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} |
---|
67 | |
---|
68 | \end{CompactItemize} |
---|
69 | |
---|
70 | |
---|
71 | \subsection{Detailed Description} |
---|
72 | Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. |
---|
73 | |
---|
74 | This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices; |
---|
75 | |
---|
76 | \subsection{Member Function Documentation} |
---|
77 | \index{fsqmat@{fsqmat}!opupdt@{opupdt}} |
---|
78 | \index{opupdt@{opupdt}!fsqmat@{fsqmat}} |
---|
79 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a} |
---|
80 | |
---|
81 | |
---|
82 | Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} |
---|
83 | \item[Parameters:] |
---|
84 | \begin{description} |
---|
85 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
86 | \end{Desc} |
---|
87 | BLAS-2b operation. |
---|
88 | |
---|
89 | Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}} |
---|
90 | \index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}} |
---|
91 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C}, bool {\em trans} = {\tt false})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_acc5d2d0a243f1de6d0106065f01f518} |
---|
92 | |
---|
93 | |
---|
94 | Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. |
---|
95 | |
---|
96 | \begin{Desc} |
---|
97 | \item[Parameters:] |
---|
98 | \begin{description} |
---|
99 | \item[{\em C}]multiplying matrix, \item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description} |
---|
100 | \end{Desc} |
---|
101 | |
---|
102 | |
---|
103 | Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_faa3bc90be142adde9cf74f573c70157}.\index{fsqmat@{fsqmat}!inv@{inv}} |
---|
104 | \index{inv@{inv}!fsqmat@{fsqmat}} |
---|
105 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void fsqmat::inv ({\bf fsqmat} $\ast$ {\em Inv})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_788423cc2679620dd6da8d2fca2e3e4d} |
---|
106 | |
---|
107 | |
---|
108 | Matrix inversion preserving the chosen form. |
---|
109 | |
---|
110 | \begin{Desc} |
---|
111 | \item[Parameters:] |
---|
112 | \begin{description} |
---|
113 | \item[{\em Inv}]a space where the inverse is stored. \end{description} |
---|
114 | \end{Desc} |
---|
115 | \index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}} |
---|
116 | \index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} |
---|
117 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (vec \& {\em v})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classfsqmat_6648dd4291b809cce14e8497d0433ad3} |
---|
118 | |
---|
119 | |
---|
120 | Multiplies square root of \$V\$ by vector \$x\$. |
---|
121 | |
---|
122 | Used e.g. in generating normal samples. |
---|
123 | |
---|
124 | Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b5236c8a050199e1a9d338b0da1a08d2}. |
---|
125 | |
---|
126 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
127 | \item |
---|
128 | work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize} |
---|