root/doc/latex/classfsqmat.tex @ 28

Revision 28, 6.0 kB (checked in by smidl, 17 years ago)

prelozitelna verze

  • Property svn:eol-style set to native
Line 
1\section{fsqmat Class Reference}
2\label{classfsqmat}\index{fsqmat@{fsqmat}}
3Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. 
4
5
6{\tt \#include $<$libDC.h$>$}
7
8Inheritance diagram for fsqmat:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=47pt]{classfsqmat__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for fsqmat:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=47pt]{classfsqmat__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25void {\bf opupdt} (const vec \&v, double w)
26\item 
27mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8}
28
29\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
30void {\bf mult\_\-sym} (const mat \&C, bool trans=false)
31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 
32void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U, bool trans=false)\label{classfsqmat_ccf5ad8fb038f82e9d2201c0606b65fa}
33
34\item 
35void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
36
37\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
38{\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
39
40\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
41virtual void {\bf inv} ({\bf fsqmat} \&Inv)
42\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
43double {\bf logdet} ()\label{classfsqmat_bf212272ec195ad2706e2bf4d8e7c9b3}
44
45\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
46double {\bf qform} (vec \&v)\label{classfsqmat_6d047b9f7a27dfc093303a13cc9b1fba}
47
48\begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item 
49vec {\bf sqrt\_\-mult} (vec \&v)
50\begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item 
51{\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
52
53\item 
54{\bf fsqmat} \& \textbf{operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
55
56\item 
57{\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7}
58
59\item 
60int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
61
62\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 
63int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
64
65\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize}
66\subsection*{Protected Attributes}
67\begin{CompactItemize}
68\item 
69mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
70
71\item 
72int \textbf{dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d}
73
74\end{CompactItemize}
75
76
77\subsection{Detailed Description}
78Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix.
79
80This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices;
81
82\subsection{Member Function Documentation}
83\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
84\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
85\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
86
87
88Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc}
89\item[Parameters:]
90\begin{description}
91\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
92\end{Desc}
93BLAS-2b operation.
94
95Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}}
96\index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}}
97\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C}, bool {\em trans} = {\tt false})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_acc5d2d0a243f1de6d0106065f01f518}
98
99
100Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.
101
102\begin{Desc}
103\item[Parameters:]
104\begin{description}
105\item[{\em C}]multiplying matrix, \item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description}
106\end{Desc}
107
108
109Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_faa3bc90be142adde9cf74f573c70157}.\index{fsqmat@{fsqmat}!inv@{inv}}
110\index{inv@{inv}!fsqmat@{fsqmat}}
111\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
112
113
114Matrix inversion preserving the chosen form.
115
116\begin{Desc}
117\item[Parameters:]
118\begin{description}
119\item[{\em Inv}]a space where the inverse is stored. \end{description}
120\end{Desc}
121\index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}}
122\index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
123\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (vec \& {\em v})\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_6648dd4291b809cce14e8497d0433ad3}
124
125
126Multiplies square root of \$V\$ by vector \$x\$.
127
128Used e.g. in generating normal samples.
129
130Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b5236c8a050199e1a9d338b0da1a08d2}.
131
132The documentation for this class was generated from the following files:\begin{CompactItemize}
133\item 
134work/mixpp/bdm/math/{\bf libDC.h}\item 
135work/mixpp/bdm/math/libDC.cpp\item 
136work/mixpp/bdm/math/libDC\_\-.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.