\section{fsqmat Class Reference} \label{classfsqmat}\index{fsqmat@{fsqmat}} Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. {\tt \#include $<$libDC.h$>$} Inheritance diagram for fsqmat:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=47pt]{classfsqmat__inherit__graph} \end{center} \end{figure} Collaboration diagram for fsqmat:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=47pt]{classfsqmat__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item void {\bf opupdt} (const vec \&v, double w) \item mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8} \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item void {\bf mult\_\-sym} (const mat \&C) \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item void {\bf mult\_\-sym\_\-t} (const mat \&C) \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_cfea3618d426e2b8232f09aa0070266f} \item void \textbf{mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_7ca865c68989d22903efe97045cb6c9a} \item void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4} \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item {\bf fsqmat} ()\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940} \begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item {\bf fsqmat} (const int dim0)\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f} \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item {\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item virtual {\bf $\sim$fsqmat} ()\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e} \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item virtual void {\bf inv} ({\bf fsqmat} \&Inv) \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item double {\bf logdet} () const \label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5} \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item double {\bf qform} (const vec \&v)\label{classfsqmat_1eec8762a2299d83c7b7cd6bf6cbc1ad} \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item vec {\bf sqrt\_\-mult} (const vec \&v) \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item {\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} \item {\bf fsqmat} \& \textbf{operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7} \item {\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7} \item int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} \item int \textbf{dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} \end{CompactItemize} \subsection*{Friends} \begin{CompactItemize} \item std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f} \end{CompactItemize} \subsection{Detailed Description} Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices; \subsection{Member Function Documentation} \index{fsqmat@{fsqmat}!opupdt@{opupdt}} \index{opupdt@{opupdt}!fsqmat@{fsqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a} Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} \end{Desc} BLAS-2b operation. Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}} \index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_5530d2756b5d991de755e6121c9a452e} Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_60fbbfa9e483b8187c135f787ee53afa}.\index{fsqmat@{fsqmat}!mult_sym_t@{mult\_\-sym\_\-t}} \index{mult_sym_t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_92052a8adc2054b63e42d1373d145c89} Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6909e906da17725b1b80f3cae7cf3325}.\index{fsqmat@{fsqmat}!inv@{inv}} \index{inv@{inv}!fsqmat@{fsqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1} Matrix inversion preserving the chosen form. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em Inv}]a space where the inverse is stored. \end{description} \end{Desc} \index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}} \index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classfsqmat_2288389e2d47bd9df112815ef570c5c9} Multiplies square root of \$V\$ by vector \$x\$. Used e.g. in generating normal samples. Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_975ddc7e8035d8d4e6cbd52dd99c248c}. The documentation for this class was generated from the following files:\begin{CompactItemize} \item work/mixpp/bdm/math/{\bf libDC.h}\item work/mixpp/bdm/math/libDC.cpp\item work/mixpp/bdm/math/libDC\_\-.cpp\end{CompactItemize}