root/doc/latex/classfsqmat.tex @ 125

Revision 91, 9.4 kB (checked in by smidl, 17 years ago)

drobnosti a dokumentace

  • Property svn:eol-style set to native
Line 
1\section{fsqmat Class Reference}
2\label{classfsqmat}\index{fsqmat@{fsqmat}}
3Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix. 
4
5
6{\tt \#include $<$libDC.h$>$}
7
8Inheritance diagram for fsqmat:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=45pt]{classfsqmat__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for fsqmat:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=45pt]{classfsqmat__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25void {\bf opupdt} (const vec \&v, double w)
26\item 
27mat {\bf to\_\-mat} ()\label{classfsqmat_cedf4f048309056f4262c930914dfda8}
28
29\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
30void {\bf mult\_\-sym} (const mat \&C)
31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
32void {\bf mult\_\-sym\_\-t} (const mat \&C)
33\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
34void {\bf mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}
35
36\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix $U$ \item\end{CompactList}\item 
37void {\bf mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}
38
39\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix $U$ \item\end{CompactList}\item 
40void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
41
42\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
43{\bf fsqmat} ()\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}
44
45\begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item 
46{\bf fsqmat} (const int dim0)\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f}
47
48\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 
49{\bf fsqmat} (const mat \&{\bf M})\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
50
51\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
52{\bf fsqmat} (const vec \&d)\label{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}
53
54\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
55virtual {\bf $\sim$fsqmat} ()\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}
56
57\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
58virtual void {\bf inv} ({\bf fsqmat} \&Inv)
59\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
60double {\bf logdet} () const \label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}
61
62\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
63double {\bf qform} (const vec \&v) const \label{classfsqmat_a6c91b0389e73404324b2314b08d6e87}
64
65\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
66double {\bf invqform} (const vec \&v) const \label{classfsqmat_58075da64ddadd4df40654c35b928c6f}
67
68\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
69vec {\bf sqrt\_\-mult} (const vec \&v) const
70\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
71void {\bf add} (const {\bf fsqmat} \&fsq2, double w=1.0)\label{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}
72
73\begin{CompactList}\small\item\em Add another matrix in fsq form with weight w. \item\end{CompactList}\item 
74void {\bf setD} (const vec \&nD)\label{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}
75
76\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
77vec {\bf getD} ()\label{classfsqmat_bcf837b2956745e8986044f5600dbd6e}
78
79\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
80void {\bf setD} (const vec \&nD, int i)\label{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}
81
82\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
83{\bf fsqmat} \& {\bf operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
84
85\begin{CompactList}\small\item\em add another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item 
86{\bf fsqmat} \& {\bf operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
87
88\begin{CompactList}\small\item\em subtrack another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item 
89{\bf fsqmat} \& {\bf operator$\ast$=} (double x)\label{classfsqmat_af800e7b2146da5e60897255dde80059}
90
91\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item 
92int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
93
94\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 
95int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
96
97\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize}
98\subsection*{Protected Attributes}
99\begin{CompactItemize}
100\item 
101mat {\bf M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
102
103\begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item 
104int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d}
105
106\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
107\subsection*{Friends}
108\begin{CompactItemize}
109\item 
110std::ostream \& {\bf operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}
111
112\begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize}
113
114
115\subsection{Detailed Description}
116Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix.
117
118This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices;
119
120\subsection{Member Function Documentation}
121\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
122\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
123\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
124
125
126Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
127\item[Parameters:]
128\begin{description}
129\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
130\end{Desc}
131BLAS-2b operation.
132
133Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.
134
135References M.\index{fsqmat@{fsqmat}!mult\_\-sym@{mult\_\-sym}}
136\index{mult\_\-sym@{mult\_\-sym}!fsqmat@{fsqmat}}
137\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_5530d2756b5d991de755e6121c9a452e}
138
139
140Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
141
142\begin{Desc}
143\item[Parameters:]
144\begin{description}
145\item[{\em C}]multiplying matrix, \end{description}
146\end{Desc}
147
148
149Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_60fbbfa9e483b8187c135f787ee53afa}.
150
151References M.
152
153Referenced by EKF$<$ sq\_\-T $>$::bayes().\index{fsqmat@{fsqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
154\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}}
155\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_92052a8adc2054b63e42d1373d145c89}
156
157
158Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
159
160\begin{Desc}
161\item[Parameters:]
162\begin{description}
163\item[{\em C}]multiplying matrix, \end{description}
164\end{Desc}
165
166
167Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6909e906da17725b1b80f3cae7cf3325}.
168
169References M.\index{fsqmat@{fsqmat}!inv@{inv}}
170\index{inv@{inv}!fsqmat@{fsqmat}}
171\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt  [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
172
173
174Matrix inversion preserving the chosen form.
175
176\begin{Desc}
177\item[Parameters:]
178\begin{description}
179\item[{\em Inv}]a space where the inverse is stored. \end{description}
180\end{Desc}
181
182
183References M.
184
185Referenced by EKF$<$ sq\_\-T $>$::bayes().\index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
186\index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
187\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_842a774077ee34ac3c36d180ab33e103}
188
189
190Multiplies square root of $V$ by vector $x$.
191
192Used e.g. in generating normal samples.
193
194Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}.
195
196References M.
197
198The documentation for this class was generated from the following files:\begin{CompactItemize}
199\item 
200work/mixpp/bdm/math/{\bf libDC.h}\item 
201work/mixpp/bdm/math/libDC.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.