root/doc/latex/classfsqmat.tex @ 271

Revision 271, 13.0 kB (checked in by smidl, 16 years ago)

Next major revision

  • Property svn:eol-style set to native
Line 
1\hypertarget{classfsqmat}{
2\section{fsqmat Class Reference}
3\label{classfsqmat}\index{fsqmat@{fsqmat}}
4}
5{\tt \#include $<$libDC.h$>$}
6
7Inheritance diagram for fsqmat::\begin{figure}[H]
8\begin{center}
9\leavevmode
10\includegraphics[height=2cm]{classfsqmat}
11\end{center}
12\end{figure}
13
14
15\subsection{Detailed Description}
16Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix.
17
18This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices; \subsection*{Public Member Functions}
19\begin{CompactItemize}
20\item 
21void \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{opupdt} (const vec \&v, double w)
22\item 
23\hypertarget{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{
24mat \hyperlink{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}{to\_\-mat} () const }
25\label{classfsqmat_f54fc955e8e3b43d15afa92124bc24b3}
26
27\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
28void \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{mult\_\-sym} (const mat \&C)
29\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
30void \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{mult\_\-sym\_\-t} (const mat \&C)
31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
32\hypertarget{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{
33void \hyperlink{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}{mult\_\-sym} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const }
34\label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3}
35
36\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix $U$ \item\end{CompactList}\item 
37\hypertarget{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{
38void \hyperlink{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classfsqmat}{fsqmat} \&U) const }
39\label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a}
40
41\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix $U$ \item\end{CompactList}\item 
42\hypertarget{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{
43void \hyperlink{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}{clear} ()}
44\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4}
45
46\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
47\hypertarget{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{
48\hyperlink{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}{fsqmat} ()}
49\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940}
50
51\begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item 
52\hypertarget{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{
53\hyperlink{classfsqmat_40eae99305e7c7240fa95cfec125b06f}{fsqmat} (const int dim0)}
54\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f}
55
56\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 
57\hypertarget{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{
58\hyperlink{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}{fsqmat} (const mat \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M})}
59\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f}
60
61\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
62\hypertarget{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{
63\hyperlink{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}{fsqmat} (const \hyperlink{classfsqmat}{fsqmat} \&\hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}, const ivec \&perm)}
64\label{classfsqmat_9e19a5e26083f4a493b6fad38cc40fab}
65
66\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
67\hypertarget{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{
68\hyperlink{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}{fsqmat} (const vec \&d)}
69\label{classfsqmat_c01f3e9bb590f2a2921369d672f3ce1e}
70
71\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
72\hypertarget{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{
73virtual \hyperlink{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}{$\sim$fsqmat} ()}
74\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e}
75
76\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
77virtual void \hyperlink{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{inv} (\hyperlink{classfsqmat}{fsqmat} \&Inv)
78\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
79\hypertarget{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{
80double \hyperlink{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}{logdet} () const }
81\label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5}
82
83\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
84\hypertarget{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{
85double \hyperlink{classfsqmat_a6c91b0389e73404324b2314b08d6e87}{qform} (const vec \&v) const }
86\label{classfsqmat_a6c91b0389e73404324b2314b08d6e87}
87
88\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
89\hypertarget{classfsqmat_58075da64ddadd4df40654c35b928c6f}{
90double \hyperlink{classfsqmat_58075da64ddadd4df40654c35b928c6f}{invqform} (const vec \&v) const }
91\label{classfsqmat_58075da64ddadd4df40654c35b928c6f}
92
93\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
94vec \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{sqrt\_\-mult} (const vec \&v) const
95\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
96\hypertarget{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{
97void \hyperlink{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}{add} (const \hyperlink{classfsqmat}{fsqmat} \&fsq2, double w=1.0)}
98\label{classfsqmat_a2e0bf7dbbbbe1d3358064c4ad455f1f}
99
100\begin{CompactList}\small\item\em Add another matrix in fsq form with weight w. \item\end{CompactList}\item 
101\hypertarget{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{
102void \hyperlink{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}{setD} (const vec \&nD)}
103\label{classfsqmat_922f8190c13987cbcdb33ec2bf5cf105}
104
105\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
106\hypertarget{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{
107vec \hyperlink{classfsqmat_bcf837b2956745e8986044f5600dbd6e}{getD} ()}
108\label{classfsqmat_bcf837b2956745e8986044f5600dbd6e}
109
110\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
111\hypertarget{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{
112void \hyperlink{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}{setD} (const vec \&nD, int i)}
113\label{classfsqmat_03a8f49eb4d38a054ecc522be59cd2ad}
114
115\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
116\hypertarget{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{
117\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}{operator+=} (const \hyperlink{classfsqmat}{fsqmat} \&A)}
118\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de}
119
120\begin{CompactList}\small\item\em add another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item 
121\hypertarget{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{
122\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}{operator-=} (const \hyperlink{classfsqmat}{fsqmat} \&A)}
123\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7}
124
125\begin{CompactList}\small\item\em subtrack another \hyperlink{classfsqmat}{fsqmat} matrix \item\end{CompactList}\item 
126\hypertarget{classfsqmat_af800e7b2146da5e60897255dde80059}{
127\hyperlink{classfsqmat}{fsqmat} \& \hyperlink{classfsqmat_af800e7b2146da5e60897255dde80059}{operator$\ast$=} (double x)}
128\label{classfsqmat_af800e7b2146da5e60897255dde80059}
129
130\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item 
131\hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{
132int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const }
133\label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
134
135\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
136\hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{
137int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const }
138\label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
139
140\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\end{CompactItemize}
141\subsection*{Protected Attributes}
142\begin{CompactItemize}
143\item 
144\hypertarget{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{
145mat \hyperlink{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}{M}}
146\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453}
147
148\begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item 
149\hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{
150int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}}
151\label{classsqmat_0abed904bdc0882373ba9adba919689d}
152
153\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
154\subsection*{Friends}
155\begin{CompactItemize}
156\item 
157\hypertarget{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{
158std::ostream \& \hyperlink{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classfsqmat}{fsqmat} \&sq)}
159\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f}
160
161\begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize}
162
163
164\subsection{Member Function Documentation}
165\hypertarget{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{
166\index{fsqmat@{fsqmat}!opupdt@{opupdt}}
167\index{opupdt@{opupdt}!fsqmat@{fsqmat}}
168\subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
169\label{classfsqmat_b36530e155667fe9f1bd58394e50c65a}
170
171
172Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
173\item[Parameters:]
174\begin{description}
175\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
176\end{Desc}
177BLAS-2b operation.
178
179Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}.
180
181References M.\hypertarget{classfsqmat_5530d2756b5d991de755e6121c9a452e}{
182\index{fsqmat@{fsqmat}!mult\_\-sym@{mult\_\-sym}}
183\index{mult\_\-sym@{mult\_\-sym}!fsqmat@{fsqmat}}
184\subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
185\label{classfsqmat_5530d2756b5d991de755e6121c9a452e}
186
187
188Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
189
190\begin{Desc}
191\item[Parameters:]
192\begin{description}
193\item[{\em C}]multiplying matrix, \end{description}
194\end{Desc}
195
196
197Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}.
198
199References M.
200
201Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes().\hypertarget{classfsqmat_92052a8adc2054b63e42d1373d145c89}{
202\index{fsqmat@{fsqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
203\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}}
204\subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
205\label{classfsqmat_92052a8adc2054b63e42d1373d145c89}
206
207
208Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
209
210\begin{Desc}
211\item[Parameters:]
212\begin{description}
213\item[{\em C}]multiplying matrix, \end{description}
214\end{Desc}
215
216
217Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}.
218
219References M.\hypertarget{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}{
220\index{fsqmat@{fsqmat}!inv@{inv}}
221\index{inv@{inv}!fsqmat@{fsqmat}}
222\subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt  \mbox{[}virtual\mbox{]}}}}
223\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}
224
225
226Matrix inversion preserving the chosen form.
227
228\begin{Desc}
229\item[Parameters:]
230\begin{description}
231\item[{\em Inv}]a space where the inverse is stored. \end{description}
232\end{Desc}
233
234
235References M.
236
237Referenced by bdm::EKF$<$ sq\_\-T $>$::bayes(), and bdm::egiw::evallog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{
238\index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
239\index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}}
240\subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}}
241\label{classfsqmat_842a774077ee34ac3c36d180ab33e103}
242
243
244Multiplies square root of $V$ by vector $x$.
245
246Used e.g. in generating normal samples.
247
248Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}.
249
250References M.
251
252The documentation for this class was generated from the following files:\begin{CompactItemize}
253\item 
254\hyperlink{libDC_8h}{libDC.h}\item 
255libDC.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.