[172] | 1 | \hypertarget{classldmat}{ |
---|
[33] | 2 | \section{ldmat Class Reference} |
---|
| 3 | \label{classldmat}\index{ldmat@{ldmat}} |
---|
[172] | 4 | } |
---|
[181] | 5 | Matrix stored in LD form, (commonly known as UD). |
---|
[33] | 6 | |
---|
| 7 | |
---|
| 8 | {\tt \#include $<$libDC.h$>$} |
---|
| 9 | |
---|
| 10 | Inheritance diagram for ldmat:\nopagebreak |
---|
| 11 | \begin{figure}[H] |
---|
| 12 | \begin{center} |
---|
| 13 | \leavevmode |
---|
[91] | 14 | \includegraphics[width=43pt]{classldmat__inherit__graph} |
---|
[33] | 15 | \end{center} |
---|
| 16 | \end{figure} |
---|
| 17 | Collaboration diagram for ldmat:\nopagebreak |
---|
| 18 | \begin{figure}[H] |
---|
| 19 | \begin{center} |
---|
| 20 | \leavevmode |
---|
[91] | 21 | \includegraphics[width=43pt]{classldmat__coll__graph} |
---|
[33] | 22 | \end{center} |
---|
| 23 | \end{figure} |
---|
| 24 | \subsection*{Public Member Functions} |
---|
| 25 | \begin{CompactItemize} |
---|
| 26 | \item |
---|
[172] | 27 | \hypertarget{classldmat_968113788422e858da23a477e98fd3a1}{ |
---|
| 28 | \hyperlink{classldmat_968113788422e858da23a477e98fd3a1}{ldmat} (const mat \&\hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}, const vec \&\hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D})} |
---|
| 29 | \label{classldmat_968113788422e858da23a477e98fd3a1} |
---|
[33] | 30 | |
---|
| 31 | \begin{CompactList}\small\item\em Construct by copy of L and D. \item\end{CompactList}\item |
---|
[172] | 32 | \hypertarget{classldmat_5f21785358072d36892d538eed1d1ea5}{ |
---|
| 33 | \hyperlink{classldmat_5f21785358072d36892d538eed1d1ea5}{ldmat} (const mat \&V)} |
---|
| 34 | \label{classldmat_5f21785358072d36892d538eed1d1ea5} |
---|
[33] | 35 | |
---|
| 36 | \begin{CompactList}\small\item\em Construct by decomposition of full matrix V. \item\end{CompactList}\item |
---|
[181] | 37 | \hypertarget{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ |
---|
| 38 | \hyperlink{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ldmat} (const \hyperlink{classldmat}{ldmat} \&V0, const ivec \&perm)} |
---|
| 39 | \label{classldmat_8e88c818f9605bc726e52c4136c71cc5} |
---|
| 40 | |
---|
| 41 | \begin{CompactList}\small\item\em Construct by restructuring of V0 accordint to permutation vector perm. \item\end{CompactList}\item |
---|
[172] | 42 | \hypertarget{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ |
---|
| 43 | \hyperlink{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ldmat} (vec D0)} |
---|
| 44 | \label{classldmat_abe16e0f86668ef61a9a4896c8565dee} |
---|
[33] | 45 | |
---|
| 46 | \begin{CompactList}\small\item\em Construct diagonal matrix with diagonal D0. \item\end{CompactList}\item |
---|
[172] | 47 | \hypertarget{classldmat_a12dda6f529580b0377cc45226b43303}{ |
---|
| 48 | \hyperlink{classldmat_a12dda6f529580b0377cc45226b43303}{ldmat} ()} |
---|
| 49 | \label{classldmat_a12dda6f529580b0377cc45226b43303} |
---|
[33] | 50 | |
---|
| 51 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
[172] | 52 | \hypertarget{classldmat_163ee002a7858d104da1c59dd11f016d}{ |
---|
| 53 | \hyperlink{classldmat_163ee002a7858d104da1c59dd11f016d}{ldmat} (const int dim0)} |
---|
| 54 | \label{classldmat_163ee002a7858d104da1c59dd11f016d} |
---|
[33] | 55 | |
---|
| 56 | \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item |
---|
[172] | 57 | \hypertarget{classldmat_1e2734c0164ce5233c4d709679555138}{ |
---|
| 58 | virtual \hyperlink{classldmat_1e2734c0164ce5233c4d709679555138}{$\sim$ldmat} ()} |
---|
| 59 | \label{classldmat_1e2734c0164ce5233c4d709679555138} |
---|
[33] | 60 | |
---|
| 61 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
[172] | 62 | void \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{opupdt} (const vec \&v, double w) |
---|
[33] | 63 | \item |
---|
[172] | 64 | \hypertarget{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{ |
---|
| 65 | mat \hyperlink{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{to\_\-mat} () const } |
---|
| 66 | \label{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e} |
---|
[33] | 67 | |
---|
| 68 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
[172] | 69 | void \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{mult\_\-sym} (const mat \&C) |
---|
[79] | 70 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item |
---|
[172] | 71 | void \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{mult\_\-sym\_\-t} (const mat \&C) |
---|
[79] | 72 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item |
---|
[172] | 73 | \hypertarget{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{ |
---|
| 74 | void \hyperlink{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{add} (const \hyperlink{classldmat}{ldmat} \&ld2, double w=1.0)} |
---|
| 75 | \label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20} |
---|
[33] | 76 | |
---|
| 77 | \begin{CompactList}\small\item\em Add another matrix in LD form with weight w. \item\end{CompactList}\item |
---|
[172] | 78 | \hypertarget{classldmat_2b42750ba4962d439aa52a77ae12949b}{ |
---|
| 79 | double \hyperlink{classldmat_2b42750ba4962d439aa52a77ae12949b}{logdet} () const } |
---|
| 80 | \label{classldmat_2b42750ba4962d439aa52a77ae12949b} |
---|
[33] | 81 | |
---|
| 82 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
[172] | 83 | \hypertarget{classldmat_d64f331b781903e913cb2ee836886f3f}{ |
---|
| 84 | double \hyperlink{classldmat_d64f331b781903e913cb2ee836886f3f}{qform} (const vec \&v) const } |
---|
| 85 | \label{classldmat_d64f331b781903e913cb2ee836886f3f} |
---|
[33] | 86 | |
---|
[79] | 87 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item |
---|
[172] | 88 | \hypertarget{classldmat_d876c5f83e02b3e809b35c9de5068f14}{ |
---|
| 89 | double \hyperlink{classldmat_d876c5f83e02b3e809b35c9de5068f14}{invqform} (const vec \&v) const } |
---|
| 90 | \label{classldmat_d876c5f83e02b3e809b35c9de5068f14} |
---|
[79] | 91 | |
---|
| 92 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item |
---|
[172] | 93 | \hypertarget{classldmat_4d6e401de9607332305c27e67972a07a}{ |
---|
| 94 | void \hyperlink{classldmat_4d6e401de9607332305c27e67972a07a}{clear} ()} |
---|
| 95 | \label{classldmat_4d6e401de9607332305c27e67972a07a} |
---|
[33] | 96 | |
---|
| 97 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
[219] | 98 | \hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ |
---|
| 99 | int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } |
---|
| 100 | \label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} |
---|
[33] | 101 | |
---|
| 102 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
[219] | 103 | \hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ |
---|
| 104 | int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } |
---|
| 105 | \label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} |
---|
[33] | 106 | |
---|
| 107 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
[172] | 108 | vec \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{sqrt\_\-mult} (const vec \&v) const |
---|
[79] | 109 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item |
---|
[172] | 110 | virtual void \hyperlink{classldmat_2c160cb123c1102face7a50ec566a031}{inv} (\hyperlink{classldmat}{ldmat} \&Inv) const |
---|
[33] | 111 | \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item |
---|
[172] | 112 | void \hyperlink{classldmat_e7207748909325bb0f99b43f090a2b7e}{mult\_\-sym} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
[79] | 113 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
[172] | 114 | void \hyperlink{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
[79] | 115 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
[172] | 116 | void \hyperlink{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ldform} (const mat \&A, const vec \&D0) |
---|
[79] | 117 | \begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item |
---|
[172] | 118 | \hypertarget{classldmat_0884a613b94fde61bfc84288e73ce57f}{ |
---|
| 119 | void \hyperlink{classldmat_0884a613b94fde61bfc84288e73ce57f}{setD} (const vec \&nD)} |
---|
| 120 | \label{classldmat_0884a613b94fde61bfc84288e73ce57f} |
---|
[33] | 121 | |
---|
| 122 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 123 | \hypertarget{classldmat_7619922b4de18830ce5351c6b5667e60}{ |
---|
| 124 | void \hyperlink{classldmat_7619922b4de18830ce5351c6b5667e60}{setD} (const vec \&nD, int i)} |
---|
| 125 | \label{classldmat_7619922b4de18830ce5351c6b5667e60} |
---|
[33] | 126 | |
---|
| 127 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 128 | \hypertarget{classldmat_32ff66296627ff5341d7c0b973249614}{ |
---|
| 129 | void \hyperlink{classldmat_32ff66296627ff5341d7c0b973249614}{setL} (const vec \&nL)} |
---|
| 130 | \label{classldmat_32ff66296627ff5341d7c0b973249614} |
---|
[33] | 131 | |
---|
| 132 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 133 | \hypertarget{classldmat_282c879f50aa9ef934e7f46d86881582}{ |
---|
| 134 | const vec \& \hyperlink{classldmat_282c879f50aa9ef934e7f46d86881582}{\_\-D} () const } |
---|
| 135 | \label{classldmat_282c879f50aa9ef934e7f46d86881582} |
---|
[99] | 136 | |
---|
| 137 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 138 | \hypertarget{classldmat_5f44f100248c6627314afaa653b9e5bd}{ |
---|
| 139 | const mat \& \hyperlink{classldmat_5f44f100248c6627314afaa653b9e5bd}{\_\-L} () const } |
---|
| 140 | \label{classldmat_5f44f100248c6627314afaa653b9e5bd} |
---|
[99] | 141 | |
---|
| 142 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[219] | 143 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
[172] | 144 | \begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
[219] | 145 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
[172] | 146 | \begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
| 147 | \hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ |
---|
| 148 | \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_875b7e6dcf73ae7001329099019fdb1d}{operator$\ast$=} (double x)} |
---|
| 149 | \label{classldmat_875b7e6dcf73ae7001329099019fdb1d} |
---|
[33] | 150 | |
---|
| 151 | \begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\end{CompactItemize} |
---|
| 152 | \subsection*{Protected Attributes} |
---|
| 153 | \begin{CompactItemize} |
---|
| 154 | \item |
---|
[172] | 155 | \hypertarget{classldmat_4cce04824539c4a8d062d9a36d6e014e}{ |
---|
| 156 | vec \hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D}} |
---|
| 157 | \label{classldmat_4cce04824539c4a8d062d9a36d6e014e} |
---|
[33] | 158 | |
---|
[79] | 159 | \begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item |
---|
[172] | 160 | \hypertarget{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{ |
---|
| 161 | mat \hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}} |
---|
| 162 | \label{classldmat_f74a64b99fe58a75ebd37bb679e121ea} |
---|
[33] | 163 | |
---|
[79] | 164 | \begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize} |
---|
[33] | 165 | \subsection*{Friends} |
---|
| 166 | \begin{CompactItemize} |
---|
| 167 | \item |
---|
[172] | 168 | \hypertarget{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{ |
---|
| 169 | std::ostream \& \hyperlink{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classldmat}{ldmat} \&sq)} |
---|
| 170 | \label{classldmat_eaaa0baa6026b84cfcbced41c84599d1} |
---|
[33] | 171 | |
---|
| 172 | \begin{CompactList}\small\item\em print both {\tt L} and {\tt D} \item\end{CompactList}\end{CompactItemize} |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | \subsection{Detailed Description} |
---|
[181] | 176 | Matrix stored in LD form, (commonly known as UD). |
---|
[33] | 177 | |
---|
[79] | 178 | Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided. |
---|
[33] | 179 | |
---|
| 180 | \subsection{Member Function Documentation} |
---|
[172] | 181 | \hypertarget{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ |
---|
[33] | 182 | \index{ldmat@{ldmat}!opupdt@{opupdt}} |
---|
| 183 | \index{opupdt@{opupdt}!ldmat@{ldmat}} |
---|
[172] | 184 | \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 185 | \label{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a} |
---|
[33] | 186 | |
---|
| 187 | |
---|
[79] | 188 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} |
---|
[33] | 189 | \item[Parameters:] |
---|
| 190 | \begin{description} |
---|
| 191 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
| 192 | \end{Desc} |
---|
| 193 | BLAS-2b operation. |
---|
| 194 | |
---|
[172] | 195 | Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. |
---|
[91] | 196 | |
---|
[219] | 197 | References D, sqmat::dim, dydr(), and L. |
---|
[91] | 198 | |
---|
[255] | 199 | Referenced by add(), bdm::ARX::bayes(), and bdm::ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ |
---|
[172] | 200 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
[91] | 201 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
[172] | 202 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 203 | \label{classldmat_e967b9425007f0cb6cd59b845f9756d8} |
---|
[33] | 204 | |
---|
| 205 | |
---|
[79] | 206 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. |
---|
[33] | 207 | |
---|
| 208 | \begin{Desc} |
---|
| 209 | \item[Parameters:] |
---|
| 210 | \begin{description} |
---|
| 211 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 212 | \end{Desc} |
---|
| 213 | |
---|
| 214 | |
---|
[172] | 215 | Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}. |
---|
[91] | 216 | |
---|
[172] | 217 | References D, L, and ldform().\hypertarget{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ |
---|
| 218 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
[91] | 219 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
[172] | 220 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 221 | \label{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9} |
---|
[33] | 222 | |
---|
| 223 | |
---|
[79] | 224 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. |
---|
[33] | 225 | |
---|
| 226 | \begin{Desc} |
---|
| 227 | \item[Parameters:] |
---|
| 228 | \begin{description} |
---|
| 229 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 230 | \end{Desc} |
---|
| 231 | |
---|
| 232 | |
---|
[172] | 233 | Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}. |
---|
[91] | 234 | |
---|
[172] | 235 | References D, L, and ldform().\hypertarget{classldmat_fc380626ced6f9244fb58c5f0231174d}{ |
---|
| 236 | \index{ldmat@{ldmat}!sqrt\_\-mult@{sqrt\_\-mult}} |
---|
[91] | 237 | \index{sqrt\_\-mult@{sqrt\_\-mult}!ldmat@{ldmat}} |
---|
[172] | 238 | \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec ldmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 239 | \label{classldmat_fc380626ced6f9244fb58c5f0231174d} |
---|
[33] | 240 | |
---|
| 241 | |
---|
[79] | 242 | Multiplies square root of $V$ by vector $x$. |
---|
[33] | 243 | |
---|
| 244 | Used e.g. in generating normal samples. |
---|
| 245 | |
---|
[172] | 246 | Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}. |
---|
[91] | 247 | |
---|
[172] | 248 | References D, sqmat::dim, and L.\hypertarget{classldmat_2c160cb123c1102face7a50ec566a031}{ |
---|
| 249 | \index{ldmat@{ldmat}!inv@{inv}} |
---|
[33] | 250 | \index{inv@{inv}!ldmat@{ldmat}} |
---|
[172] | 251 | \subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::inv ({\bf ldmat} \& {\em Inv}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 252 | \label{classldmat_2c160cb123c1102face7a50ec566a031} |
---|
[33] | 253 | |
---|
| 254 | |
---|
| 255 | Matrix inversion preserving the chosen form. |
---|
| 256 | |
---|
| 257 | \begin{Desc} |
---|
| 258 | \item[Parameters:] |
---|
| 259 | \begin{description} |
---|
| 260 | \item[{\em Inv}]a space where the inverse is stored. \end{description} |
---|
| 261 | \end{Desc} |
---|
| 262 | |
---|
| 263 | |
---|
[261] | 264 | References clear(), D, L, ldform(), and ltuinv(). |
---|
| 265 | |
---|
| 266 | Referenced by bdm::egiw::variance().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ |
---|
[172] | 267 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
[91] | 268 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
[172] | 269 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
| 270 | \label{classldmat_e7207748909325bb0f99b43f090a2b7e} |
---|
[91] | 271 | |
---|
| 272 | |
---|
[79] | 273 | Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. |
---|
[33] | 274 | |
---|
| 275 | \begin{Desc} |
---|
| 276 | \item[Parameters:] |
---|
| 277 | \begin{description} |
---|
| 278 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
| 279 | \end{Desc} |
---|
| 280 | |
---|
| 281 | |
---|
[172] | 282 | References D, L, and ldform().\hypertarget{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{ |
---|
| 283 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
[91] | 284 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
[172] | 285 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
| 286 | \label{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab} |
---|
[91] | 287 | |
---|
| 288 | |
---|
[79] | 289 | Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. |
---|
[33] | 290 | |
---|
| 291 | \begin{Desc} |
---|
| 292 | \item[Parameters:] |
---|
| 293 | \begin{description} |
---|
| 294 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
| 295 | \end{Desc} |
---|
[91] | 296 | |
---|
| 297 | |
---|
[172] | 298 | References D, L, and ldform().\hypertarget{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ |
---|
| 299 | \index{ldmat@{ldmat}!ldform@{ldform}} |
---|
[33] | 300 | \index{ldform@{ldform}!ldmat@{ldmat}} |
---|
[172] | 301 | \subsubsection[ldform]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::ldform (const mat \& {\em A}, \/ const vec \& {\em D0})}} |
---|
| 302 | \label{classldmat_f291faa073e7bc8dfafc7ae93daa2506} |
---|
[33] | 303 | |
---|
| 304 | |
---|
[79] | 305 | Transforms general $A'D0 A$ into pure $L'DL$. |
---|
[33] | 306 | |
---|
[79] | 307 | The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc} |
---|
[33] | 308 | \item[Parameters:] |
---|
| 309 | \begin{description} |
---|
| 310 | \item[{\em A}]general matrix \item[{\em D0}]general vector \end{description} |
---|
| 311 | \end{Desc} |
---|
[91] | 312 | |
---|
| 313 | |
---|
| 314 | References D, sqmat::dim, and L. |
---|
| 315 | |
---|
[261] | 316 | Referenced by bdm::egiw\_\-bestbelow(), inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). |
---|
[33] | 317 | |
---|
| 318 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
| 319 | \item |
---|
[261] | 320 | \hyperlink{libDC_8h}{libDC.h}\item |
---|
| 321 | libDC.cpp\end{CompactItemize} |
---|