[172] | 1 | \hypertarget{classldmat}{ |
---|
[33] | 2 | \section{ldmat Class Reference} |
---|
| 3 | \label{classldmat}\index{ldmat@{ldmat}} |
---|
[172] | 4 | } |
---|
[33] | 5 | {\tt \#include $<$libDC.h$>$} |
---|
| 6 | |
---|
[271] | 7 | Inheritance diagram for ldmat::\begin{figure}[H] |
---|
[33] | 8 | \begin{center} |
---|
| 9 | \leavevmode |
---|
[271] | 10 | \includegraphics[height=2cm]{classldmat} |
---|
[33] | 11 | \end{center} |
---|
| 12 | \end{figure} |
---|
[270] | 13 | |
---|
| 14 | |
---|
| 15 | \subsection{Detailed Description} |
---|
| 16 | Matrix stored in LD form, (commonly known as UD). |
---|
| 17 | |
---|
| 18 | Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided. \subsection*{Public Member Functions} |
---|
[33] | 19 | \begin{CompactItemize} |
---|
| 20 | \item |
---|
[172] | 21 | \hypertarget{classldmat_968113788422e858da23a477e98fd3a1}{ |
---|
| 22 | \hyperlink{classldmat_968113788422e858da23a477e98fd3a1}{ldmat} (const mat \&\hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}, const vec \&\hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D})} |
---|
| 23 | \label{classldmat_968113788422e858da23a477e98fd3a1} |
---|
[33] | 24 | |
---|
| 25 | \begin{CompactList}\small\item\em Construct by copy of L and D. \item\end{CompactList}\item |
---|
[172] | 26 | \hypertarget{classldmat_5f21785358072d36892d538eed1d1ea5}{ |
---|
| 27 | \hyperlink{classldmat_5f21785358072d36892d538eed1d1ea5}{ldmat} (const mat \&V)} |
---|
| 28 | \label{classldmat_5f21785358072d36892d538eed1d1ea5} |
---|
[33] | 29 | |
---|
| 30 | \begin{CompactList}\small\item\em Construct by decomposition of full matrix V. \item\end{CompactList}\item |
---|
[181] | 31 | \hypertarget{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ |
---|
| 32 | \hyperlink{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ldmat} (const \hyperlink{classldmat}{ldmat} \&V0, const ivec \&perm)} |
---|
| 33 | \label{classldmat_8e88c818f9605bc726e52c4136c71cc5} |
---|
| 34 | |
---|
| 35 | \begin{CompactList}\small\item\em Construct by restructuring of V0 accordint to permutation vector perm. \item\end{CompactList}\item |
---|
[172] | 36 | \hypertarget{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ |
---|
| 37 | \hyperlink{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ldmat} (vec D0)} |
---|
| 38 | \label{classldmat_abe16e0f86668ef61a9a4896c8565dee} |
---|
[33] | 39 | |
---|
| 40 | \begin{CompactList}\small\item\em Construct diagonal matrix with diagonal D0. \item\end{CompactList}\item |
---|
[172] | 41 | \hypertarget{classldmat_a12dda6f529580b0377cc45226b43303}{ |
---|
| 42 | \hyperlink{classldmat_a12dda6f529580b0377cc45226b43303}{ldmat} ()} |
---|
| 43 | \label{classldmat_a12dda6f529580b0377cc45226b43303} |
---|
[33] | 44 | |
---|
| 45 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
[172] | 46 | \hypertarget{classldmat_163ee002a7858d104da1c59dd11f016d}{ |
---|
| 47 | \hyperlink{classldmat_163ee002a7858d104da1c59dd11f016d}{ldmat} (const int dim0)} |
---|
| 48 | \label{classldmat_163ee002a7858d104da1c59dd11f016d} |
---|
[33] | 49 | |
---|
| 50 | \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item |
---|
[172] | 51 | \hypertarget{classldmat_1e2734c0164ce5233c4d709679555138}{ |
---|
| 52 | virtual \hyperlink{classldmat_1e2734c0164ce5233c4d709679555138}{$\sim$ldmat} ()} |
---|
| 53 | \label{classldmat_1e2734c0164ce5233c4d709679555138} |
---|
[33] | 54 | |
---|
| 55 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
[172] | 56 | void \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{opupdt} (const vec \&v, double w) |
---|
[33] | 57 | \item |
---|
[172] | 58 | \hypertarget{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{ |
---|
| 59 | mat \hyperlink{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{to\_\-mat} () const } |
---|
| 60 | \label{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e} |
---|
[33] | 61 | |
---|
| 62 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
[172] | 63 | void \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{mult\_\-sym} (const mat \&C) |
---|
[79] | 64 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item |
---|
[172] | 65 | void \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{mult\_\-sym\_\-t} (const mat \&C) |
---|
[79] | 66 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item |
---|
[172] | 67 | \hypertarget{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{ |
---|
| 68 | void \hyperlink{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{add} (const \hyperlink{classldmat}{ldmat} \&ld2, double w=1.0)} |
---|
| 69 | \label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20} |
---|
[33] | 70 | |
---|
| 71 | \begin{CompactList}\small\item\em Add another matrix in LD form with weight w. \item\end{CompactList}\item |
---|
[172] | 72 | \hypertarget{classldmat_2b42750ba4962d439aa52a77ae12949b}{ |
---|
| 73 | double \hyperlink{classldmat_2b42750ba4962d439aa52a77ae12949b}{logdet} () const } |
---|
| 74 | \label{classldmat_2b42750ba4962d439aa52a77ae12949b} |
---|
[33] | 75 | |
---|
| 76 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
[172] | 77 | \hypertarget{classldmat_d64f331b781903e913cb2ee836886f3f}{ |
---|
| 78 | double \hyperlink{classldmat_d64f331b781903e913cb2ee836886f3f}{qform} (const vec \&v) const } |
---|
| 79 | \label{classldmat_d64f331b781903e913cb2ee836886f3f} |
---|
[33] | 80 | |
---|
[79] | 81 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item |
---|
[172] | 82 | \hypertarget{classldmat_d876c5f83e02b3e809b35c9de5068f14}{ |
---|
| 83 | double \hyperlink{classldmat_d876c5f83e02b3e809b35c9de5068f14}{invqform} (const vec \&v) const } |
---|
| 84 | \label{classldmat_d876c5f83e02b3e809b35c9de5068f14} |
---|
[79] | 85 | |
---|
| 86 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item |
---|
[172] | 87 | \hypertarget{classldmat_4d6e401de9607332305c27e67972a07a}{ |
---|
| 88 | void \hyperlink{classldmat_4d6e401de9607332305c27e67972a07a}{clear} ()} |
---|
| 89 | \label{classldmat_4d6e401de9607332305c27e67972a07a} |
---|
[33] | 90 | |
---|
| 91 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
[219] | 92 | \hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ |
---|
| 93 | int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } |
---|
| 94 | \label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} |
---|
[33] | 95 | |
---|
| 96 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
[219] | 97 | \hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ |
---|
| 98 | int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } |
---|
| 99 | \label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} |
---|
[33] | 100 | |
---|
| 101 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
[172] | 102 | vec \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{sqrt\_\-mult} (const vec \&v) const |
---|
[79] | 103 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item |
---|
[172] | 104 | virtual void \hyperlink{classldmat_2c160cb123c1102face7a50ec566a031}{inv} (\hyperlink{classldmat}{ldmat} \&Inv) const |
---|
[33] | 105 | \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item |
---|
[172] | 106 | void \hyperlink{classldmat_e7207748909325bb0f99b43f090a2b7e}{mult\_\-sym} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
[79] | 107 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
[172] | 108 | void \hyperlink{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
[79] | 109 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
[172] | 110 | void \hyperlink{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ldform} (const mat \&A, const vec \&D0) |
---|
[79] | 111 | \begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item |
---|
[172] | 112 | \hypertarget{classldmat_0884a613b94fde61bfc84288e73ce57f}{ |
---|
| 113 | void \hyperlink{classldmat_0884a613b94fde61bfc84288e73ce57f}{setD} (const vec \&nD)} |
---|
| 114 | \label{classldmat_0884a613b94fde61bfc84288e73ce57f} |
---|
[33] | 115 | |
---|
| 116 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 117 | \hypertarget{classldmat_7619922b4de18830ce5351c6b5667e60}{ |
---|
| 118 | void \hyperlink{classldmat_7619922b4de18830ce5351c6b5667e60}{setD} (const vec \&nD, int i)} |
---|
| 119 | \label{classldmat_7619922b4de18830ce5351c6b5667e60} |
---|
[33] | 120 | |
---|
| 121 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 122 | \hypertarget{classldmat_32ff66296627ff5341d7c0b973249614}{ |
---|
| 123 | void \hyperlink{classldmat_32ff66296627ff5341d7c0b973249614}{setL} (const vec \&nL)} |
---|
| 124 | \label{classldmat_32ff66296627ff5341d7c0b973249614} |
---|
[33] | 125 | |
---|
| 126 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 127 | \hypertarget{classldmat_282c879f50aa9ef934e7f46d86881582}{ |
---|
| 128 | const vec \& \hyperlink{classldmat_282c879f50aa9ef934e7f46d86881582}{\_\-D} () const } |
---|
| 129 | \label{classldmat_282c879f50aa9ef934e7f46d86881582} |
---|
[99] | 130 | |
---|
| 131 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[172] | 132 | \hypertarget{classldmat_5f44f100248c6627314afaa653b9e5bd}{ |
---|
| 133 | const mat \& \hyperlink{classldmat_5f44f100248c6627314afaa653b9e5bd}{\_\-L} () const } |
---|
| 134 | \label{classldmat_5f44f100248c6627314afaa653b9e5bd} |
---|
[99] | 135 | |
---|
| 136 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
[219] | 137 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
[172] | 138 | \begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
[219] | 139 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
[172] | 140 | \begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
| 141 | \hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ |
---|
| 142 | \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_875b7e6dcf73ae7001329099019fdb1d}{operator$\ast$=} (double x)} |
---|
| 143 | \label{classldmat_875b7e6dcf73ae7001329099019fdb1d} |
---|
[33] | 144 | |
---|
| 145 | \begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\end{CompactItemize} |
---|
| 146 | \subsection*{Protected Attributes} |
---|
| 147 | \begin{CompactItemize} |
---|
| 148 | \item |
---|
[172] | 149 | \hypertarget{classldmat_4cce04824539c4a8d062d9a36d6e014e}{ |
---|
| 150 | vec \hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D}} |
---|
| 151 | \label{classldmat_4cce04824539c4a8d062d9a36d6e014e} |
---|
[33] | 152 | |
---|
[79] | 153 | \begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item |
---|
[172] | 154 | \hypertarget{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{ |
---|
| 155 | mat \hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}} |
---|
| 156 | \label{classldmat_f74a64b99fe58a75ebd37bb679e121ea} |
---|
[33] | 157 | |
---|
[79] | 158 | \begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize} |
---|
[33] | 159 | \subsection*{Friends} |
---|
| 160 | \begin{CompactItemize} |
---|
| 161 | \item |
---|
[172] | 162 | \hypertarget{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{ |
---|
| 163 | std::ostream \& \hyperlink{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classldmat}{ldmat} \&sq)} |
---|
| 164 | \label{classldmat_eaaa0baa6026b84cfcbced41c84599d1} |
---|
[33] | 165 | |
---|
| 166 | \begin{CompactList}\small\item\em print both {\tt L} and {\tt D} \item\end{CompactList}\end{CompactItemize} |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | \subsection{Member Function Documentation} |
---|
[172] | 170 | \hypertarget{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ |
---|
[33] | 171 | \index{ldmat@{ldmat}!opupdt@{opupdt}} |
---|
| 172 | \index{opupdt@{opupdt}!ldmat@{ldmat}} |
---|
[172] | 173 | \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 174 | \label{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a} |
---|
[33] | 175 | |
---|
| 176 | |
---|
[79] | 177 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} |
---|
[33] | 178 | \item[Parameters:] |
---|
| 179 | \begin{description} |
---|
| 180 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
| 181 | \end{Desc} |
---|
| 182 | BLAS-2b operation. |
---|
| 183 | |
---|
[172] | 184 | Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. |
---|
[91] | 185 | |
---|
[219] | 186 | References D, sqmat::dim, dydr(), and L. |
---|
[91] | 187 | |
---|
[255] | 188 | Referenced by add(), bdm::ARX::bayes(), and bdm::ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ |
---|
[172] | 189 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
[91] | 190 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
[172] | 191 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 192 | \label{classldmat_e967b9425007f0cb6cd59b845f9756d8} |
---|
[33] | 193 | |
---|
| 194 | |
---|
[79] | 195 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. |
---|
[33] | 196 | |
---|
| 197 | \begin{Desc} |
---|
| 198 | \item[Parameters:] |
---|
| 199 | \begin{description} |
---|
| 200 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 201 | \end{Desc} |
---|
| 202 | |
---|
| 203 | |
---|
[172] | 204 | Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}. |
---|
[91] | 205 | |
---|
[172] | 206 | References D, L, and ldform().\hypertarget{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ |
---|
| 207 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
[91] | 208 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
[172] | 209 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 210 | \label{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9} |
---|
[33] | 211 | |
---|
| 212 | |
---|
[79] | 213 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. |
---|
[33] | 214 | |
---|
| 215 | \begin{Desc} |
---|
| 216 | \item[Parameters:] |
---|
| 217 | \begin{description} |
---|
| 218 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 219 | \end{Desc} |
---|
| 220 | |
---|
| 221 | |
---|
[172] | 222 | Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}. |
---|
[91] | 223 | |
---|
[172] | 224 | References D, L, and ldform().\hypertarget{classldmat_fc380626ced6f9244fb58c5f0231174d}{ |
---|
| 225 | \index{ldmat@{ldmat}!sqrt\_\-mult@{sqrt\_\-mult}} |
---|
[91] | 226 | \index{sqrt\_\-mult@{sqrt\_\-mult}!ldmat@{ldmat}} |
---|
[172] | 227 | \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec ldmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 228 | \label{classldmat_fc380626ced6f9244fb58c5f0231174d} |
---|
[33] | 229 | |
---|
| 230 | |
---|
[79] | 231 | Multiplies square root of $V$ by vector $x$. |
---|
[33] | 232 | |
---|
| 233 | Used e.g. in generating normal samples. |
---|
| 234 | |
---|
[172] | 235 | Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}. |
---|
[91] | 236 | |
---|
[172] | 237 | References D, sqmat::dim, and L.\hypertarget{classldmat_2c160cb123c1102face7a50ec566a031}{ |
---|
| 238 | \index{ldmat@{ldmat}!inv@{inv}} |
---|
[33] | 239 | \index{inv@{inv}!ldmat@{ldmat}} |
---|
[172] | 240 | \subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::inv ({\bf ldmat} \& {\em Inv}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
| 241 | \label{classldmat_2c160cb123c1102face7a50ec566a031} |
---|
[33] | 242 | |
---|
| 243 | |
---|
| 244 | Matrix inversion preserving the chosen form. |
---|
| 245 | |
---|
| 246 | \begin{Desc} |
---|
| 247 | \item[Parameters:] |
---|
| 248 | \begin{description} |
---|
| 249 | \item[{\em Inv}]a space where the inverse is stored. \end{description} |
---|
| 250 | \end{Desc} |
---|
| 251 | |
---|
| 252 | |
---|
[261] | 253 | References clear(), D, L, ldform(), and ltuinv(). |
---|
| 254 | |
---|
| 255 | Referenced by bdm::egiw::variance().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ |
---|
[172] | 256 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
[91] | 257 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
[172] | 258 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
| 259 | \label{classldmat_e7207748909325bb0f99b43f090a2b7e} |
---|
[91] | 260 | |
---|
| 261 | |
---|
[79] | 262 | Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. |
---|
[33] | 263 | |
---|
| 264 | \begin{Desc} |
---|
| 265 | \item[Parameters:] |
---|
| 266 | \begin{description} |
---|
| 267 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
| 268 | \end{Desc} |
---|
| 269 | |
---|
| 270 | |
---|
[172] | 271 | References D, L, and ldform().\hypertarget{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{ |
---|
| 272 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
[91] | 273 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
[172] | 274 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
| 275 | \label{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab} |
---|
[91] | 276 | |
---|
| 277 | |
---|
[79] | 278 | Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. |
---|
[33] | 279 | |
---|
| 280 | \begin{Desc} |
---|
| 281 | \item[Parameters:] |
---|
| 282 | \begin{description} |
---|
| 283 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
| 284 | \end{Desc} |
---|
[91] | 285 | |
---|
| 286 | |
---|
[172] | 287 | References D, L, and ldform().\hypertarget{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ |
---|
| 288 | \index{ldmat@{ldmat}!ldform@{ldform}} |
---|
[33] | 289 | \index{ldform@{ldform}!ldmat@{ldmat}} |
---|
[172] | 290 | \subsubsection[ldform]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::ldform (const mat \& {\em A}, \/ const vec \& {\em D0})}} |
---|
| 291 | \label{classldmat_f291faa073e7bc8dfafc7ae93daa2506} |
---|
[33] | 292 | |
---|
| 293 | |
---|
[79] | 294 | Transforms general $A'D0 A$ into pure $L'DL$. |
---|
[33] | 295 | |
---|
[79] | 296 | The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc} |
---|
[33] | 297 | \item[Parameters:] |
---|
| 298 | \begin{description} |
---|
| 299 | \item[{\em A}]general matrix \item[{\em D0}]general vector \end{description} |
---|
| 300 | \end{Desc} |
---|
[91] | 301 | |
---|
| 302 | |
---|
| 303 | References D, sqmat::dim, and L. |
---|
| 304 | |
---|
[271] | 305 | Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). |
---|
[33] | 306 | |
---|
| 307 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
| 308 | \item |
---|
[261] | 309 | \hyperlink{libDC_8h}{libDC.h}\item |
---|
| 310 | libDC.cpp\end{CompactItemize} |
---|