root/doc/latex/classldmat.tex @ 91

Revision 91, 12.0 kB (checked in by smidl, 17 years ago)

drobnosti a dokumentace

  • Property svn:eol-style set to native
RevLine 
[33]1\section{ldmat Class Reference}
2\label{classldmat}\index{ldmat@{ldmat}}
3Matrix stored in LD form, (typically known as UD). 
4
5
6{\tt \#include $<$libDC.h$>$}
7
8Inheritance diagram for ldmat:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
[91]12\includegraphics[width=43pt]{classldmat__inherit__graph}
[33]13\end{center}
14\end{figure}
15Collaboration diagram for ldmat:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
[91]19\includegraphics[width=43pt]{classldmat__coll__graph}
[33]20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf ldmat} (const mat \&{\bf L}, const vec \&{\bf D})\label{classldmat_968113788422e858da23a477e98fd3a1}
26
27\begin{CompactList}\small\item\em Construct by copy of L and D. \item\end{CompactList}\item 
28{\bf ldmat} (const mat \&V)\label{classldmat_5f21785358072d36892d538eed1d1ea5}
29
30\begin{CompactList}\small\item\em Construct by decomposition of full matrix V. \item\end{CompactList}\item 
31{\bf ldmat} (vec D0)\label{classldmat_abe16e0f86668ef61a9a4896c8565dee}
32
33\begin{CompactList}\small\item\em Construct diagonal matrix with diagonal D0. \item\end{CompactList}\item 
34{\bf ldmat} ()\label{classldmat_a12dda6f529580b0377cc45226b43303}
35
36\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
37{\bf ldmat} (const int dim0)\label{classldmat_163ee002a7858d104da1c59dd11f016d}
38
39\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 
40virtual {\bf $\sim$ldmat} ()\label{classldmat_1e2734c0164ce5233c4d709679555138}
41
42\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
43void {\bf opupdt} (const vec \&v, double w)
44\item 
45mat {\bf to\_\-mat} ()\label{classldmat_5b0515da8dc2293d9e4360b74cc26c9e}
46
47\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
48void {\bf mult\_\-sym} (const mat \&C)
[79]49\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
[33]50void {\bf mult\_\-sym\_\-t} (const mat \&C)
[79]51\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
[33]52void {\bf add} (const {\bf ldmat} \&ld2, double w=1.0)\label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}
53
54\begin{CompactList}\small\item\em Add another matrix in LD form with weight w. \item\end{CompactList}\item 
55double {\bf logdet} () const \label{classldmat_2b42750ba4962d439aa52a77ae12949b}
56
57\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
58double {\bf qform} (const vec \&v) const \label{classldmat_d64f331b781903e913cb2ee836886f3f}
59
[79]60\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
61double {\bf invqform} (const vec \&v) const \label{classldmat_d876c5f83e02b3e809b35c9de5068f14}
62
63\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
[33]64void {\bf clear} ()\label{classldmat_4d6e401de9607332305c27e67972a07a}
65
66\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
67int {\bf cols} () const \label{classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}
68
69\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
70int {\bf rows} () const \label{classldmat_96dfb21865db4f5bd36fa70f9b0b1163}
71
72\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
73vec {\bf sqrt\_\-mult} (const vec \&v) const
[79]74\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
[33]75virtual void {\bf inv} ({\bf ldmat} \&Inv) const
76\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 
77void {\bf mult\_\-sym} (const mat \&C, {\bf ldmat} \&U) const
[79]78\begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item 
[33]79void {\bf mult\_\-sym\_\-t} (const mat \&C, {\bf ldmat} \&U) const
[79]80\begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item 
[33]81void {\bf ldform} (const mat \&A, const vec \&D0)
[79]82\begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item 
[33]83void {\bf setD} (const vec \&nD)\label{classldmat_0884a613b94fde61bfc84288e73ce57f}
84
85\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
86void {\bf setD} (const vec \&nD, int i)\label{classldmat_7619922b4de18830ce5351c6b5667e60}
87
88\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
89void {\bf setL} (const vec \&nL)\label{classldmat_32ff66296627ff5341d7c0b973249614}
90
91\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 
92{\bf ldmat} \& {\bf operator+=} (const {\bf ldmat} \&ldA)
93\begin{CompactList}\small\item\em add another \doxyref{ldmat}{p.}{classldmat} matrix \item\end{CompactList}\item 
94{\bf ldmat} \& {\bf operator-=} (const {\bf ldmat} \&ldA)
95\begin{CompactList}\small\item\em subtract another \doxyref{ldmat}{p.}{classldmat} matrix \item\end{CompactList}\item 
[91]96{\bf ldmat} \& {\bf operator$\ast$=} (double x)\label{classldmat_875b7e6dcf73ae7001329099019fdb1d}
[33]97
98\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\end{CompactItemize}
99\subsection*{Protected Attributes}
100\begin{CompactItemize}
101\item 
102vec {\bf D}\label{classldmat_4cce04824539c4a8d062d9a36d6e014e}
103
[79]104\begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item 
[33]105mat {\bf L}\label{classldmat_f74a64b99fe58a75ebd37bb679e121ea}
106
[79]107\begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize}
[33]108\subsection*{Friends}
109\begin{CompactItemize}
110\item 
111std::ostream \& {\bf operator$<$$<$} (std::ostream \&os, const {\bf ldmat} \&sq)\label{classldmat_eaaa0baa6026b84cfcbced41c84599d1}
112
113\begin{CompactList}\small\item\em print both {\tt L} and {\tt D} \item\end{CompactList}\end{CompactItemize}
114
115
116\subsection{Detailed Description}
117Matrix stored in LD form, (typically known as UD).
118
[79]119Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided.
[33]120
121\subsection{Member Function Documentation}
122\index{ldmat@{ldmat}!opupdt@{opupdt}}
123\index{opupdt@{opupdt}!ldmat@{ldmat}}
[91]124\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  [virtual]}}\label{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}
[33]125
126
[79]127Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
[33]128\item[Parameters:]
129\begin{description}
130\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
131\end{Desc}
132BLAS-2b operation.
133
[91]134Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.
135
136References D, sqmat::dim, and L.
137
138Referenced by add(), and inv().\index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}}
139\index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}}
[33]140\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classldmat_e967b9425007f0cb6cd59b845f9756d8}
141
142
[79]143Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
[33]144
145\begin{Desc}
146\item[Parameters:]
147\begin{description}
148\item[{\em C}]multiplying matrix, \end{description}
149\end{Desc}
150
151
[91]152Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_60fbbfa9e483b8187c135f787ee53afa}.
153
154References D, L, and ldform().\index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
155\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}}
[33]156\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  [virtual]}}\label{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}
157
158
[79]159Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
[33]160
161\begin{Desc}
162\item[Parameters:]
163\begin{description}
164\item[{\em C}]multiplying matrix, \end{description}
165\end{Desc}
166
167
[91]168Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6909e906da17725b1b80f3cae7cf3325}.
169
170References D, L, and ldform().\index{ldmat@{ldmat}!sqrt\_\-mult@{sqrt\_\-mult}}
171\index{sqrt\_\-mult@{sqrt\_\-mult}!ldmat@{ldmat}}
[33]172\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec ldmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [virtual]}}\label{classldmat_fc380626ced6f9244fb58c5f0231174d}
173
174
[79]175Multiplies square root of $V$ by vector $x$.
[33]176
177Used e.g. in generating normal samples.
178
[91]179Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}.
180
181References D, sqmat::dim, and L.\index{ldmat@{ldmat}!inv@{inv}}
[33]182\index{inv@{inv}!ldmat@{ldmat}}
183\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::inv ({\bf ldmat} \& {\em Inv}) const\hspace{0.3cm}{\tt  [virtual]}}\label{classldmat_2c160cb123c1102face7a50ec566a031}
184
185
186Matrix inversion preserving the chosen form.
187
188\begin{Desc}
189\item[Parameters:]
190\begin{description}
191\item[{\em Inv}]a space where the inverse is stored. \end{description}
192\end{Desc}
193
194
[91]195References clear(), D, sqmat::dim, L, and opupdt().\index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}}
196\index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}}
197\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C}, \/  {\bf ldmat} \& {\em U}) const}\label{classldmat_e7207748909325bb0f99b43f090a2b7e}
198
199
[79]200Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class.
[33]201
202\begin{Desc}
203\item[Parameters:]
204\begin{description}
205\item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description}
206\end{Desc}
207
208
[91]209References D, L, and ldform().\index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
210\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}}
211\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C}, \/  {\bf ldmat} \& {\em U}) const}\label{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}
212
213
[79]214Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class.
[33]215
216\begin{Desc}
217\item[Parameters:]
218\begin{description}
219\item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description}
220\end{Desc}
[91]221
222
223References D, L, and ldform().\index{ldmat@{ldmat}!ldform@{ldform}}
[33]224\index{ldform@{ldform}!ldmat@{ldmat}}
[91]225\subsubsection{\setlength{\rightskip}{0pt plus 5cm}void ldmat::ldform (const mat \& {\em A}, \/  const vec \& {\em D0})}\label{classldmat_f291faa073e7bc8dfafc7ae93daa2506}
[33]226
227
[79]228Transforms general $A'D0 A$ into pure $L'DL$.
[33]229
[79]230The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc}
[33]231\item[Parameters:]
232\begin{description}
233\item[{\em A}]general matrix \item[{\em D0}]general vector \end{description}
234\end{Desc}
[91]235
236
237References D, sqmat::dim, and L.
238
239Referenced by ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t().\index{ldmat@{ldmat}!operator+=@{operator+=}}
[33]240\index{operator+=@{operator+=}!ldmat@{ldmat}}
241\subsubsection{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator+= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  [inline]}}\label{classldmat_ca445ee152a56043af946ea095b2d8f8}
242
243
244add another \doxyref{ldmat}{p.}{classldmat} matrix
245
246Operations: mapping of add operation to operators \index{ldmat@{ldmat}!operator-=@{operator-=}}
247\index{operator-=@{operator-=}!ldmat@{ldmat}}
248\subsubsection{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator-= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  [inline]}}\label{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb}
249
250
251subtract another \doxyref{ldmat}{p.}{classldmat} matrix
252
253mapping of negative add operation to operators
254
255The documentation for this class was generated from the following files:\begin{CompactItemize}
256\item 
257work/mixpp/bdm/math/{\bf libDC.h}\item 
258work/mixpp/bdm/math/libDC.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.