\hypertarget{classldmat}{ \section{ldmat Class Reference} \label{classldmat}\index{ldmat@{ldmat}} } {\tt \#include $<$libDC.h$>$} Inheritance diagram for ldmat:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=43pt]{classldmat__inherit__graph} \end{center} \end{figure} \subsection{Detailed Description} Matrix stored in LD form, (commonly known as UD). Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided. \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classldmat_968113788422e858da23a477e98fd3a1}{ \hyperlink{classldmat_968113788422e858da23a477e98fd3a1}{ldmat} (const mat \&\hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}, const vec \&\hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D})} \label{classldmat_968113788422e858da23a477e98fd3a1} \begin{CompactList}\small\item\em Construct by copy of L and D. \item\end{CompactList}\item \hypertarget{classldmat_5f21785358072d36892d538eed1d1ea5}{ \hyperlink{classldmat_5f21785358072d36892d538eed1d1ea5}{ldmat} (const mat \&V)} \label{classldmat_5f21785358072d36892d538eed1d1ea5} \begin{CompactList}\small\item\em Construct by decomposition of full matrix V. \item\end{CompactList}\item \hypertarget{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ \hyperlink{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ldmat} (const \hyperlink{classldmat}{ldmat} \&V0, const ivec \&perm)} \label{classldmat_8e88c818f9605bc726e52c4136c71cc5} \begin{CompactList}\small\item\em Construct by restructuring of V0 accordint to permutation vector perm. \item\end{CompactList}\item \hypertarget{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ \hyperlink{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ldmat} (vec D0)} \label{classldmat_abe16e0f86668ef61a9a4896c8565dee} \begin{CompactList}\small\item\em Construct diagonal matrix with diagonal D0. \item\end{CompactList}\item \hypertarget{classldmat_a12dda6f529580b0377cc45226b43303}{ \hyperlink{classldmat_a12dda6f529580b0377cc45226b43303}{ldmat} ()} \label{classldmat_a12dda6f529580b0377cc45226b43303} \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item \hypertarget{classldmat_163ee002a7858d104da1c59dd11f016d}{ \hyperlink{classldmat_163ee002a7858d104da1c59dd11f016d}{ldmat} (const int dim0)} \label{classldmat_163ee002a7858d104da1c59dd11f016d} \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item \hypertarget{classldmat_1e2734c0164ce5233c4d709679555138}{ virtual \hyperlink{classldmat_1e2734c0164ce5233c4d709679555138}{$\sim$ldmat} ()} \label{classldmat_1e2734c0164ce5233c4d709679555138} \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item void \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{opupdt} (const vec \&v, double w) \item \hypertarget{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{ mat \hyperlink{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{to\_\-mat} () const } \label{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e} \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item void \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{mult\_\-sym} (const mat \&C) \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item void \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{mult\_\-sym\_\-t} (const mat \&C) \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item \hypertarget{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{ void \hyperlink{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{add} (const \hyperlink{classldmat}{ldmat} \&ld2, double w=1.0)} \label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20} \begin{CompactList}\small\item\em Add another matrix in LD form with weight w. \item\end{CompactList}\item \hypertarget{classldmat_2b42750ba4962d439aa52a77ae12949b}{ double \hyperlink{classldmat_2b42750ba4962d439aa52a77ae12949b}{logdet} () const } \label{classldmat_2b42750ba4962d439aa52a77ae12949b} \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item \hypertarget{classldmat_d64f331b781903e913cb2ee836886f3f}{ double \hyperlink{classldmat_d64f331b781903e913cb2ee836886f3f}{qform} (const vec \&v) const } \label{classldmat_d64f331b781903e913cb2ee836886f3f} \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item \hypertarget{classldmat_d876c5f83e02b3e809b35c9de5068f14}{ double \hyperlink{classldmat_d876c5f83e02b3e809b35c9de5068f14}{invqform} (const vec \&v) const } \label{classldmat_d876c5f83e02b3e809b35c9de5068f14} \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item \hypertarget{classldmat_4d6e401de9607332305c27e67972a07a}{ void \hyperlink{classldmat_4d6e401de9607332305c27e67972a07a}{clear} ()} \label{classldmat_4d6e401de9607332305c27e67972a07a} \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item \hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } \label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } \label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item vec \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{sqrt\_\-mult} (const vec \&v) const \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item virtual void \hyperlink{classldmat_2c160cb123c1102face7a50ec566a031}{inv} (\hyperlink{classldmat}{ldmat} \&Inv) const \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item void \hyperlink{classldmat_e7207748909325bb0f99b43f090a2b7e}{mult\_\-sym} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item void \hyperlink{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item void \hyperlink{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ldform} (const mat \&A, const vec \&D0) \begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item \hypertarget{classldmat_0884a613b94fde61bfc84288e73ce57f}{ void \hyperlink{classldmat_0884a613b94fde61bfc84288e73ce57f}{setD} (const vec \&nD)} \label{classldmat_0884a613b94fde61bfc84288e73ce57f} \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item \hypertarget{classldmat_7619922b4de18830ce5351c6b5667e60}{ void \hyperlink{classldmat_7619922b4de18830ce5351c6b5667e60}{setD} (const vec \&nD, int i)} \label{classldmat_7619922b4de18830ce5351c6b5667e60} \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item \hypertarget{classldmat_32ff66296627ff5341d7c0b973249614}{ void \hyperlink{classldmat_32ff66296627ff5341d7c0b973249614}{setL} (const vec \&nL)} \label{classldmat_32ff66296627ff5341d7c0b973249614} \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item \hypertarget{classldmat_282c879f50aa9ef934e7f46d86881582}{ const vec \& \hyperlink{classldmat_282c879f50aa9ef934e7f46d86881582}{\_\-D} () const } \label{classldmat_282c879f50aa9ef934e7f46d86881582} \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item \hypertarget{classldmat_5f44f100248c6627314afaa653b9e5bd}{ const mat \& \hyperlink{classldmat_5f44f100248c6627314afaa653b9e5bd}{\_\-L} () const } \label{classldmat_5f44f100248c6627314afaa653b9e5bd} \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) \begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) \begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item \hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_875b7e6dcf73ae7001329099019fdb1d}{operator$\ast$=} (double x)} \label{classldmat_875b7e6dcf73ae7001329099019fdb1d} \begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classldmat_4cce04824539c4a8d062d9a36d6e014e}{ vec \hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D}} \label{classldmat_4cce04824539c4a8d062d9a36d6e014e} \begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item \hypertarget{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{ mat \hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}} \label{classldmat_f74a64b99fe58a75ebd37bb679e121ea} \begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize} \subsection*{Friends} \begin{CompactItemize} \item \hypertarget{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{ std::ostream \& \hyperlink{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classldmat}{ldmat} \&sq)} \label{classldmat_eaaa0baa6026b84cfcbced41c84599d1} \begin{CompactList}\small\item\em print both {\tt L} and {\tt D} \item\end{CompactList}\end{CompactItemize} \subsection{Member Function Documentation} \hypertarget{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ \index{ldmat@{ldmat}!opupdt@{opupdt}} \index{opupdt@{opupdt}!ldmat@{ldmat}} \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} \label{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a} Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} \end{Desc} BLAS-2b operation. Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. References D, sqmat::dim, dydr(), and L. Referenced by add(), bdm::ARX::bayes(), and bdm::ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} \label{classldmat_e967b9425007f0cb6cd59b845f9756d8} Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}. References D, L, and ldform().\hypertarget{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} \label{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9} Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}. References D, L, and ldform().\hypertarget{classldmat_fc380626ced6f9244fb58c5f0231174d}{ \index{ldmat@{ldmat}!sqrt\_\-mult@{sqrt\_\-mult}} \index{sqrt\_\-mult@{sqrt\_\-mult}!ldmat@{ldmat}} \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec ldmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} \label{classldmat_fc380626ced6f9244fb58c5f0231174d} Multiplies square root of $V$ by vector $x$. Used e.g. in generating normal samples. Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}. References D, sqmat::dim, and L.\hypertarget{classldmat_2c160cb123c1102face7a50ec566a031}{ \index{ldmat@{ldmat}!inv@{inv}} \index{inv@{inv}!ldmat@{ldmat}} \subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::inv ({\bf ldmat} \& {\em Inv}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} \label{classldmat_2c160cb123c1102face7a50ec566a031} Matrix inversion preserving the chosen form. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em Inv}]a space where the inverse is stored. \end{description} \end{Desc} References clear(), D, L, ldform(), and ltuinv(). Referenced by bdm::egiw::variance().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} \label{classldmat_e7207748909325bb0f99b43f090a2b7e} Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} \end{Desc} References D, L, and ldform().\hypertarget{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{ \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} \label{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab} Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} \end{Desc} References D, L, and ldform().\hypertarget{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ \index{ldmat@{ldmat}!ldform@{ldform}} \index{ldform@{ldform}!ldmat@{ldmat}} \subsubsection[ldform]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::ldform (const mat \& {\em A}, \/ const vec \& {\em D0})}} \label{classldmat_f291faa073e7bc8dfafc7ae93daa2506} Transforms general $A'D0 A$ into pure $L'DL$. The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc} \item[Parameters:] \begin{description} \item[{\em A}]general matrix \item[{\em D0}]general vector \end{description} \end{Desc} References D, sqmat::dim, and L. Referenced by bdm::egiw\_\-bestbelow(), inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). The documentation for this class was generated from the following files:\begin{CompactItemize} \item \hyperlink{libDC_8h}{libDC.h}\item libDC.cpp\end{CompactItemize}