1 | \hypertarget{classldmat}{ |
---|
2 | \section{ldmat Class Reference} |
---|
3 | \label{classldmat}\index{ldmat@{ldmat}} |
---|
4 | } |
---|
5 | Matrix stored in LD form, (commonly known as UD). |
---|
6 | |
---|
7 | |
---|
8 | {\tt \#include $<$libDC.h$>$} |
---|
9 | |
---|
10 | Inheritance diagram for ldmat:\nopagebreak |
---|
11 | \begin{figure}[H] |
---|
12 | \begin{center} |
---|
13 | \leavevmode |
---|
14 | \includegraphics[width=43pt]{classldmat__inherit__graph} |
---|
15 | \end{center} |
---|
16 | \end{figure} |
---|
17 | Collaboration diagram for ldmat:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=43pt]{classldmat__coll__graph} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Public Member Functions} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | \hypertarget{classldmat_968113788422e858da23a477e98fd3a1}{ |
---|
28 | \hyperlink{classldmat_968113788422e858da23a477e98fd3a1}{ldmat} (const mat \&\hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}, const vec \&\hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D})} |
---|
29 | \label{classldmat_968113788422e858da23a477e98fd3a1} |
---|
30 | |
---|
31 | \begin{CompactList}\small\item\em Construct by copy of L and D. \item\end{CompactList}\item |
---|
32 | \hypertarget{classldmat_5f21785358072d36892d538eed1d1ea5}{ |
---|
33 | \hyperlink{classldmat_5f21785358072d36892d538eed1d1ea5}{ldmat} (const mat \&V)} |
---|
34 | \label{classldmat_5f21785358072d36892d538eed1d1ea5} |
---|
35 | |
---|
36 | \begin{CompactList}\small\item\em Construct by decomposition of full matrix V. \item\end{CompactList}\item |
---|
37 | \hypertarget{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ |
---|
38 | \hyperlink{classldmat_8e88c818f9605bc726e52c4136c71cc5}{ldmat} (const \hyperlink{classldmat}{ldmat} \&V0, const ivec \&perm)} |
---|
39 | \label{classldmat_8e88c818f9605bc726e52c4136c71cc5} |
---|
40 | |
---|
41 | \begin{CompactList}\small\item\em Construct by restructuring of V0 accordint to permutation vector perm. \item\end{CompactList}\item |
---|
42 | \hypertarget{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ |
---|
43 | \hyperlink{classldmat_abe16e0f86668ef61a9a4896c8565dee}{ldmat} (vec D0)} |
---|
44 | \label{classldmat_abe16e0f86668ef61a9a4896c8565dee} |
---|
45 | |
---|
46 | \begin{CompactList}\small\item\em Construct diagonal matrix with diagonal D0. \item\end{CompactList}\item |
---|
47 | \hypertarget{classldmat_a12dda6f529580b0377cc45226b43303}{ |
---|
48 | \hyperlink{classldmat_a12dda6f529580b0377cc45226b43303}{ldmat} ()} |
---|
49 | \label{classldmat_a12dda6f529580b0377cc45226b43303} |
---|
50 | |
---|
51 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
52 | \hypertarget{classldmat_163ee002a7858d104da1c59dd11f016d}{ |
---|
53 | \hyperlink{classldmat_163ee002a7858d104da1c59dd11f016d}{ldmat} (const int dim0)} |
---|
54 | \label{classldmat_163ee002a7858d104da1c59dd11f016d} |
---|
55 | |
---|
56 | \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item |
---|
57 | \hypertarget{classldmat_1e2734c0164ce5233c4d709679555138}{ |
---|
58 | virtual \hyperlink{classldmat_1e2734c0164ce5233c4d709679555138}{$\sim$ldmat} ()} |
---|
59 | \label{classldmat_1e2734c0164ce5233c4d709679555138} |
---|
60 | |
---|
61 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
62 | void \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{opupdt} (const vec \&v, double w) |
---|
63 | \item |
---|
64 | \hypertarget{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{ |
---|
65 | mat \hyperlink{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e}{to\_\-mat} () const } |
---|
66 | \label{classldmat_2c1ebc071de4bafbba55b80afd8a7e8e} |
---|
67 | |
---|
68 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
69 | void \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{mult\_\-sym} (const mat \&C) |
---|
70 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item |
---|
71 | void \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{mult\_\-sym\_\-t} (const mat \&C) |
---|
72 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item |
---|
73 | \hypertarget{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{ |
---|
74 | void \hyperlink{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20}{add} (const \hyperlink{classldmat}{ldmat} \&ld2, double w=1.0)} |
---|
75 | \label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20} |
---|
76 | |
---|
77 | \begin{CompactList}\small\item\em Add another matrix in LD form with weight w. \item\end{CompactList}\item |
---|
78 | \hypertarget{classldmat_2b42750ba4962d439aa52a77ae12949b}{ |
---|
79 | double \hyperlink{classldmat_2b42750ba4962d439aa52a77ae12949b}{logdet} () const } |
---|
80 | \label{classldmat_2b42750ba4962d439aa52a77ae12949b} |
---|
81 | |
---|
82 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
83 | \hypertarget{classldmat_d64f331b781903e913cb2ee836886f3f}{ |
---|
84 | double \hyperlink{classldmat_d64f331b781903e913cb2ee836886f3f}{qform} (const vec \&v) const } |
---|
85 | \label{classldmat_d64f331b781903e913cb2ee836886f3f} |
---|
86 | |
---|
87 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item |
---|
88 | \hypertarget{classldmat_d876c5f83e02b3e809b35c9de5068f14}{ |
---|
89 | double \hyperlink{classldmat_d876c5f83e02b3e809b35c9de5068f14}{invqform} (const vec \&v) const } |
---|
90 | \label{classldmat_d876c5f83e02b3e809b35c9de5068f14} |
---|
91 | |
---|
92 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item |
---|
93 | \hypertarget{classldmat_4d6e401de9607332305c27e67972a07a}{ |
---|
94 | void \hyperlink{classldmat_4d6e401de9607332305c27e67972a07a}{clear} ()} |
---|
95 | \label{classldmat_4d6e401de9607332305c27e67972a07a} |
---|
96 | |
---|
97 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
98 | \hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ |
---|
99 | int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } |
---|
100 | \label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} |
---|
101 | |
---|
102 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
103 | \hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ |
---|
104 | int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } |
---|
105 | \label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} |
---|
106 | |
---|
107 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
---|
108 | vec \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{sqrt\_\-mult} (const vec \&v) const |
---|
109 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item |
---|
110 | virtual void \hyperlink{classldmat_2c160cb123c1102face7a50ec566a031}{inv} (\hyperlink{classldmat}{ldmat} \&Inv) const |
---|
111 | \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item |
---|
112 | void \hyperlink{classldmat_e7207748909325bb0f99b43f090a2b7e}{mult\_\-sym} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
113 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
114 | void \hyperlink{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{mult\_\-sym\_\-t} (const mat \&C, \hyperlink{classldmat}{ldmat} \&U) const |
---|
115 | \begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item |
---|
116 | void \hyperlink{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ldform} (const mat \&A, const vec \&D0) |
---|
117 | \begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item |
---|
118 | \hypertarget{classldmat_0884a613b94fde61bfc84288e73ce57f}{ |
---|
119 | void \hyperlink{classldmat_0884a613b94fde61bfc84288e73ce57f}{setD} (const vec \&nD)} |
---|
120 | \label{classldmat_0884a613b94fde61bfc84288e73ce57f} |
---|
121 | |
---|
122 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
123 | \hypertarget{classldmat_7619922b4de18830ce5351c6b5667e60}{ |
---|
124 | void \hyperlink{classldmat_7619922b4de18830ce5351c6b5667e60}{setD} (const vec \&nD, int i)} |
---|
125 | \label{classldmat_7619922b4de18830ce5351c6b5667e60} |
---|
126 | |
---|
127 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
128 | \hypertarget{classldmat_32ff66296627ff5341d7c0b973249614}{ |
---|
129 | void \hyperlink{classldmat_32ff66296627ff5341d7c0b973249614}{setL} (const vec \&nL)} |
---|
130 | \label{classldmat_32ff66296627ff5341d7c0b973249614} |
---|
131 | |
---|
132 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
133 | \hypertarget{classldmat_282c879f50aa9ef934e7f46d86881582}{ |
---|
134 | const vec \& \hyperlink{classldmat_282c879f50aa9ef934e7f46d86881582}{\_\-D} () const } |
---|
135 | \label{classldmat_282c879f50aa9ef934e7f46d86881582} |
---|
136 | |
---|
137 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
138 | \hypertarget{classldmat_5f44f100248c6627314afaa653b9e5bd}{ |
---|
139 | const mat \& \hyperlink{classldmat_5f44f100248c6627314afaa653b9e5bd}{\_\-L} () const } |
---|
140 | \label{classldmat_5f44f100248c6627314afaa653b9e5bd} |
---|
141 | |
---|
142 | \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item |
---|
143 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
144 | \begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
145 | \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) |
---|
146 | \begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item |
---|
147 | \hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ |
---|
148 | \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_875b7e6dcf73ae7001329099019fdb1d}{operator$\ast$=} (double x)} |
---|
149 | \label{classldmat_875b7e6dcf73ae7001329099019fdb1d} |
---|
150 | |
---|
151 | \begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\end{CompactItemize} |
---|
152 | \subsection*{Protected Attributes} |
---|
153 | \begin{CompactItemize} |
---|
154 | \item |
---|
155 | \hypertarget{classldmat_4cce04824539c4a8d062d9a36d6e014e}{ |
---|
156 | vec \hyperlink{classldmat_4cce04824539c4a8d062d9a36d6e014e}{D}} |
---|
157 | \label{classldmat_4cce04824539c4a8d062d9a36d6e014e} |
---|
158 | |
---|
159 | \begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item |
---|
160 | \hypertarget{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{ |
---|
161 | mat \hyperlink{classldmat_f74a64b99fe58a75ebd37bb679e121ea}{L}} |
---|
162 | \label{classldmat_f74a64b99fe58a75ebd37bb679e121ea} |
---|
163 | |
---|
164 | \begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize} |
---|
165 | \subsection*{Friends} |
---|
166 | \begin{CompactItemize} |
---|
167 | \item |
---|
168 | \hypertarget{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{ |
---|
169 | std::ostream \& \hyperlink{classldmat_eaaa0baa6026b84cfcbced41c84599d1}{operator$<$$<$} (std::ostream \&os, const \hyperlink{classldmat}{ldmat} \&sq)} |
---|
170 | \label{classldmat_eaaa0baa6026b84cfcbced41c84599d1} |
---|
171 | |
---|
172 | \begin{CompactList}\small\item\em print both {\tt L} and {\tt D} \item\end{CompactList}\end{CompactItemize} |
---|
173 | |
---|
174 | |
---|
175 | \subsection{Detailed Description} |
---|
176 | Matrix stored in LD form, (commonly known as UD). |
---|
177 | |
---|
178 | Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided. |
---|
179 | |
---|
180 | \subsection{Member Function Documentation} |
---|
181 | \hypertarget{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ |
---|
182 | \index{ldmat@{ldmat}!opupdt@{opupdt}} |
---|
183 | \index{opupdt@{opupdt}!ldmat@{ldmat}} |
---|
184 | \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
185 | \label{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a} |
---|
186 | |
---|
187 | |
---|
188 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} |
---|
189 | \item[Parameters:] |
---|
190 | \begin{description} |
---|
191 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
192 | \end{Desc} |
---|
193 | BLAS-2b operation. |
---|
194 | |
---|
195 | Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. |
---|
196 | |
---|
197 | References D, sqmat::dim, dydr(), and L. |
---|
198 | |
---|
199 | Referenced by add(), ARX::bayes(), and ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ |
---|
200 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
201 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
202 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
203 | \label{classldmat_e967b9425007f0cb6cd59b845f9756d8} |
---|
204 | |
---|
205 | |
---|
206 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. |
---|
207 | |
---|
208 | \begin{Desc} |
---|
209 | \item[Parameters:] |
---|
210 | \begin{description} |
---|
211 | \item[{\em C}]multiplying matrix, \end{description} |
---|
212 | \end{Desc} |
---|
213 | |
---|
214 | |
---|
215 | Implements \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{sqmat}. |
---|
216 | |
---|
217 | References D, L, and ldform().\hypertarget{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ |
---|
218 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
219 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
220 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
221 | \label{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9} |
---|
222 | |
---|
223 | |
---|
224 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. |
---|
225 | |
---|
226 | \begin{Desc} |
---|
227 | \item[Parameters:] |
---|
228 | \begin{description} |
---|
229 | \item[{\em C}]multiplying matrix, \end{description} |
---|
230 | \end{Desc} |
---|
231 | |
---|
232 | |
---|
233 | Implements \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{sqmat}. |
---|
234 | |
---|
235 | References D, L, and ldform().\hypertarget{classldmat_fc380626ced6f9244fb58c5f0231174d}{ |
---|
236 | \index{ldmat@{ldmat}!sqrt\_\-mult@{sqrt\_\-mult}} |
---|
237 | \index{sqrt\_\-mult@{sqrt\_\-mult}!ldmat@{ldmat}} |
---|
238 | \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}vec ldmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
239 | \label{classldmat_fc380626ced6f9244fb58c5f0231174d} |
---|
240 | |
---|
241 | |
---|
242 | Multiplies square root of $V$ by vector $x$. |
---|
243 | |
---|
244 | Used e.g. in generating normal samples. |
---|
245 | |
---|
246 | Implements \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqmat}. |
---|
247 | |
---|
248 | References D, sqmat::dim, and L.\hypertarget{classldmat_2c160cb123c1102face7a50ec566a031}{ |
---|
249 | \index{ldmat@{ldmat}!inv@{inv}} |
---|
250 | \index{inv@{inv}!ldmat@{ldmat}} |
---|
251 | \subsubsection[inv]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::inv ({\bf ldmat} \& {\em Inv}) const\hspace{0.3cm}{\tt \mbox{[}virtual\mbox{]}}}} |
---|
252 | \label{classldmat_2c160cb123c1102face7a50ec566a031} |
---|
253 | |
---|
254 | |
---|
255 | Matrix inversion preserving the chosen form. |
---|
256 | |
---|
257 | \begin{Desc} |
---|
258 | \item[Parameters:] |
---|
259 | \begin{description} |
---|
260 | \item[{\em Inv}]a space where the inverse is stored. \end{description} |
---|
261 | \end{Desc} |
---|
262 | |
---|
263 | |
---|
264 | References clear(), D, L, ldform(), and ltuinv().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ |
---|
265 | \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} |
---|
266 | \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} |
---|
267 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
268 | \label{classldmat_e7207748909325bb0f99b43f090a2b7e} |
---|
269 | |
---|
270 | |
---|
271 | Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. |
---|
272 | |
---|
273 | \begin{Desc} |
---|
274 | \item[Parameters:] |
---|
275 | \begin{description} |
---|
276 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
277 | \end{Desc} |
---|
278 | |
---|
279 | |
---|
280 | References D, L, and ldform().\hypertarget{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab}{ |
---|
281 | \index{ldmat@{ldmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
282 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!ldmat@{ldmat}} |
---|
283 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::mult\_\-sym\_\-t (const mat \& {\em C}, \/ {\bf ldmat} \& {\em U}) const}} |
---|
284 | \label{classldmat_f94dc3a233f3d40fc853d8d4ac3b8eab} |
---|
285 | |
---|
286 | |
---|
287 | Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. |
---|
288 | |
---|
289 | \begin{Desc} |
---|
290 | \item[Parameters:] |
---|
291 | \begin{description} |
---|
292 | \item[{\em C}]matrix to multiply with \item[{\em U}]a space where the inverse is stored. \end{description} |
---|
293 | \end{Desc} |
---|
294 | |
---|
295 | |
---|
296 | References D, L, and ldform().\hypertarget{classldmat_f291faa073e7bc8dfafc7ae93daa2506}{ |
---|
297 | \index{ldmat@{ldmat}!ldform@{ldform}} |
---|
298 | \index{ldform@{ldform}!ldmat@{ldmat}} |
---|
299 | \subsubsection[ldform]{\setlength{\rightskip}{0pt plus 5cm}void ldmat::ldform (const mat \& {\em A}, \/ const vec \& {\em D0})}} |
---|
300 | \label{classldmat_f291faa073e7bc8dfafc7ae93daa2506} |
---|
301 | |
---|
302 | |
---|
303 | Transforms general $A'D0 A$ into pure $L'DL$. |
---|
304 | |
---|
305 | The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc} |
---|
306 | \item[Parameters:] |
---|
307 | \begin{description} |
---|
308 | \item[{\em A}]general matrix \item[{\em D0}]general vector \end{description} |
---|
309 | \end{Desc} |
---|
310 | |
---|
311 | |
---|
312 | References D, sqmat::dim, and L. |
---|
313 | |
---|
314 | Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). |
---|
315 | |
---|
316 | The documentation for this class was generated from the following files:\begin{CompactItemize} |
---|
317 | \item |
---|
318 | work/git/mixpp/bdm/math/\hyperlink{libDC_8h}{libDC.h}\item |
---|
319 | work/git/mixpp/bdm/math/libDC.cpp\end{CompactItemize} |
---|