root/doc/latex/classmgamma.tex @ 37

Revision 33, 3.3 kB (checked in by smidl, 17 years ago)

Oprava PF a MPF + jejich implementace pro pmsm system

  • Property svn:eol-style set to native
Line 
1\section{mgamma Class Reference}
2\label{classmgamma}\index{mgamma@{mgamma}}
3Gamma random walk. 
4
5
6{\tt \#include $<$libEF.h$>$}
7
8Inheritance diagram for mgamma:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=54pt]{classmgamma__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for mgamma:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=80pt]{classmgamma__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf mgamma} (const {\bf RV} \&{\bf rv}, const {\bf RV} \&{\bf rvc})\label{classmgamma_af43e61b86900c0398d5c0ffc83b94e6}
26
27\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
28void {\bf set\_\-parameters} (double k)\label{classmgamma_a9d646cf758a70126dde7c48790b6e94}
29
30\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
31vec {\bf samplecond} (vec \&cond, double \&lik)\label{classmgamma_9f40dc43885085fad8e3d6652b79e139}
32
33\begin{CompactList}\small\item\em Generate one sample of the posterior. \item\end{CompactList}\item 
34mat {\bf samplecond} (vec \&cond, vec \&lik, int n)\label{classmgamma_e9d52749793f40aad85b70c6db4435ae}
35
36\begin{CompactList}\small\item\em Generate matrix of samples of the posterior. \item\end{CompactList}\item 
37void {\bf condition} (const vec \&val)\label{classmgamma_a61094c9f7a2d64ea77b130cbc031f97}
38
39\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \doxyref{mpdf}{p.}{classmpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
40virtual double {\bf evalcond} (const vec \&dt, const vec \&cond)\label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}
41
42\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \doxyref{epdf}{p.}{classepdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
43{\bf RV} {\bf \_\-rvc} ()\label{classmpdf_ec9c850305984582548e8deb64f0ffe8}
44
45\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
46{\bf epdf} \& {\bf \_\-epdf} ()\label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}
47
48\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
49\subsection*{Protected Attributes}
50\begin{CompactItemize}
51\item 
52{\bf RV} {\bf rv}\label{classmpdf_f6687c07ff07d47812dd565368ca59eb}
53
54\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
55{\bf RV} {\bf rvc}\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab}
56
57\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
58{\bf epdf} $\ast$ {\bf ep}\label{classmpdf_7aa894208a32f3487827df6d5054424c}
59
60\begin{CompactList}\small\item\em pointer to internal \doxyref{epdf}{p.}{classepdf} \item\end{CompactList}\end{CompactItemize}
61
62
63\subsection{Detailed Description}
64Gamma random walk.
65
66Mean value, $\mu$, of this density is given by {\tt rvc} . Standard deviation of the random walk is proportional to one \$k\$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
67
68The standard deviation of the walk is then: $\mu/\sqrt(k)$.
69
70The documentation for this class was generated from the following files:\begin{CompactItemize}
71\item 
72work/mixpp/bdm/stat/{\bf libEF.h}\item 
73work/mixpp/bdm/stat/libEF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.