root/doc/latex/classmgamma.tex @ 167

Revision 162, 5.5 kB (checked in by smidl, 16 years ago)

opravy a dokumentace

  • Property svn:eol-style set to native
Line 
1\section{mgamma Class Reference}
2\label{classmgamma}\index{mgamma@{mgamma}}
3Gamma random walk. 
4
5
6{\tt \#include $<$libEF.h$>$}
7
8Inheritance diagram for mgamma:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=58pt]{classmgamma__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for mgamma:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=76pt]{classmgamma__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf mgamma} (const {\bf RV} \&{\bf rv}, const {\bf RV} \&{\bf rvc})\label{classmgamma_af43e61b86900c0398d5c0ffc83b94e6}
26
27\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
28void {\bf set\_\-parameters} (double {\bf k})\label{classmgamma_a9d646cf758a70126dde7c48790b6e94}
29
30\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
31void {\bf condition} (const vec \&val)\label{classmgamma_a61094c9f7a2d64ea77b130cbc031f97}
32
33\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \doxyref{mpdf}{p.}{classmpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
34virtual vec {\bf samplecond} (const vec \&cond, double \&ll)
35\begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item 
36virtual mat {\bf samplecond} (const vec \&cond, vec \&ll, int N)
37\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
38virtual double {\bf evalcond} (const vec \&dt, const vec \&cond)\label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}
39
40\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \doxyref{epdf}{p.}{classepdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
41{\bf RV} {\bf \_\-rvc} ()\label{classmpdf_ec9c850305984582548e8deb64f0ffe8}
42
43\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
44{\bf RV} {\bf \_\-rv} ()\label{classmpdf_1e71ad4c66d5884c82d4a3b06b42fe32}
45
46\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
47{\bf epdf} \& {\bf \_\-epdf} ()\label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}
48
49\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
50\subsection*{Protected Attributes}
51\begin{CompactItemize}
52\item 
53{\bf egamma} {\bf epdf}\label{classmgamma_612dbf35c770a780027619aaac2c443e}
54
55\begin{CompactList}\small\item\em Internal \doxyref{epdf}{p.}{classepdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
56double {\bf k}\label{classmgamma_43f733cce0245a52363d566099add687}
57
58\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
59vec $\ast$ {\bf \_\-beta}\label{classmgamma_5e90652837448bcc29707e7412f99691}
60
61\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
62{\bf RV} {\bf rv}\label{classmpdf_f6687c07ff07d47812dd565368ca59eb}
63
64\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
65{\bf RV} {\bf rvc}\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab}
66
67\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
68{\bf epdf} $\ast$ {\bf ep}\label{classmpdf_7aa894208a32f3487827df6d5054424c}
69
70\begin{CompactList}\small\item\em pointer to internal \doxyref{epdf}{p.}{classepdf} \item\end{CompactList}\end{CompactItemize}
71
72
73\subsection{Detailed Description}
74Gamma random walk.
75
76Mean value, $\mu$, of this density is given by {\tt rvc} . Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
77
78The standard deviation of the walk is then: $\mu/\sqrt(k)$.
79
80\subsection{Member Function Documentation}
81\index{mgamma@{mgamma}!samplecond@{samplecond}}
82\index{samplecond@{samplecond}!mgamma@{mgamma}}
83\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec mpdf::samplecond (const vec \& {\em cond}, \/  double \& {\em ll})\hspace{0.3cm}{\tt  [inline, virtual, inherited]}}\label{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}
84
85
86Returns the required moment of the \doxyref{epdf}{p.}{classepdf}.
87
88Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc}
89\item[Parameters:]
90\begin{description}
91\item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
92\end{Desc}
93
94
95References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample().
96
97Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\index{mgamma@{mgamma}!samplecond@{samplecond}}
98\index{samplecond@{samplecond}!mgamma@{mgamma}}
99\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  [inline, virtual, inherited]}}\label{classmpdf_0e37163660f93df2a4d723cedb1da89c}
100
101
102Returns.
103
104\begin{Desc}
105\item[Parameters:]
106\begin{description}
107\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
108\end{Desc}
109
110
111References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample().
112
113The documentation for this class was generated from the following files:\begin{CompactItemize}
114\item 
115work/git/mixpp/bdm/stat/{\bf libEF.h}\item 
116work/git/mixpp/bdm/stat/libEF.cpp\end{CompactItemize}
Note: See TracBrowser for help on using the browser.