| 1 | \section{mgamma\_\-fix Class Reference} |
|---|
| 2 | \label{classmgamma__fix}\index{mgamma\_\-fix@{mgamma\_\-fix}} |
|---|
| 3 | Gamma random walk around a fixed point. |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | {\tt \#include $<$libEF.h$>$} |
|---|
| 7 | |
|---|
| 8 | Inheritance diagram for mgamma\_\-fix:\nopagebreak |
|---|
| 9 | \begin{figure}[H] |
|---|
| 10 | \begin{center} |
|---|
| 11 | \leavevmode |
|---|
| 12 | \includegraphics[width=58pt]{classmgamma__fix__inherit__graph} |
|---|
| 13 | \end{center} |
|---|
| 14 | \end{figure} |
|---|
| 15 | Collaboration diagram for mgamma\_\-fix:\nopagebreak |
|---|
| 16 | \begin{figure}[H] |
|---|
| 17 | \begin{center} |
|---|
| 18 | \leavevmode |
|---|
| 19 | \includegraphics[width=76pt]{classmgamma__fix__coll__graph} |
|---|
| 20 | \end{center} |
|---|
| 21 | \end{figure} |
|---|
| 22 | \subsection*{Public Member Functions} |
|---|
| 23 | \begin{CompactItemize} |
|---|
| 24 | \item |
|---|
| 25 | {\bf mgamma\_\-fix} (const {\bf RV} \&{\bf rv}, const {\bf RV} \&{\bf rvc})\label{classmgamma__fix_b92c3d2e5fd0381033a072e5ef3bcf80} |
|---|
| 26 | |
|---|
| 27 | \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item |
|---|
| 28 | void {\bf set\_\-parameters} (double k0, vec ref0, double l0)\label{classmgamma__fix_ec6f846896749e27cb7be9fa48dd1cb1} |
|---|
| 29 | |
|---|
| 30 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
|---|
| 31 | void {\bf condition} (const vec \&val)\label{classmgamma__fix_6ea3931eec7b7da7b693e45981052460} |
|---|
| 32 | |
|---|
| 33 | \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \doxyref{mpdf}{p.}{classmpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item |
|---|
| 34 | void {\bf set\_\-parameters} (double {\bf k})\label{classmgamma_a9d646cf758a70126dde7c48790b6e94} |
|---|
| 35 | |
|---|
| 36 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
|---|
| 37 | virtual vec {\bf samplecond} (const vec \&cond, double \&ll) |
|---|
| 38 | \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item |
|---|
| 39 | virtual mat {\bf samplecond} (const vec \&cond, vec \&ll, int N) |
|---|
| 40 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item |
|---|
| 41 | virtual double {\bf evalcond} (const vec \&dt, const vec \&cond)\label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} |
|---|
| 42 | |
|---|
| 43 | \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \doxyref{epdf}{p.}{classepdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item |
|---|
| 44 | {\bf RV} {\bf \_\-rvc} ()\label{classmpdf_ec9c850305984582548e8deb64f0ffe8} |
|---|
| 45 | |
|---|
| 46 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
|---|
| 47 | {\bf RV} {\bf \_\-rv} ()\label{classmpdf_1e71ad4c66d5884c82d4a3b06b42fe32} |
|---|
| 48 | |
|---|
| 49 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
|---|
| 50 | {\bf epdf} \& {\bf \_\-epdf} ()\label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8} |
|---|
| 51 | |
|---|
| 52 | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
|---|
| 53 | \subsection*{Protected Attributes} |
|---|
| 54 | \begin{CompactItemize} |
|---|
| 55 | \item |
|---|
| 56 | double {\bf l}\label{classmgamma__fix_3f48c09caddc298901ad75fe7c0529f6} |
|---|
| 57 | |
|---|
| 58 | \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item |
|---|
| 59 | vec {\bf refl}\label{classmgamma__fix_81ce49029ecc385418619b200dcafeb0} |
|---|
| 60 | |
|---|
| 61 | \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item |
|---|
| 62 | {\bf egamma} {\bf epdf}\label{classmgamma_612dbf35c770a780027619aaac2c443e} |
|---|
| 63 | |
|---|
| 64 | \begin{CompactList}\small\item\em Internal \doxyref{epdf}{p.}{classepdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item |
|---|
| 65 | double {\bf k}\label{classmgamma_43f733cce0245a52363d566099add687} |
|---|
| 66 | |
|---|
| 67 | \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item |
|---|
| 68 | vec $\ast$ {\bf \_\-beta}\label{classmgamma_5e90652837448bcc29707e7412f99691} |
|---|
| 69 | |
|---|
| 70 | \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item |
|---|
| 71 | {\bf RV} {\bf rv}\label{classmpdf_f6687c07ff07d47812dd565368ca59eb} |
|---|
| 72 | |
|---|
| 73 | \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item |
|---|
| 74 | {\bf RV} {\bf rvc}\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab} |
|---|
| 75 | |
|---|
| 76 | \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item |
|---|
| 77 | {\bf epdf} $\ast$ {\bf ep}\label{classmpdf_7aa894208a32f3487827df6d5054424c} |
|---|
| 78 | |
|---|
| 79 | \begin{CompactList}\small\item\em pointer to internal \doxyref{epdf}{p.}{classepdf} \item\end{CompactList}\end{CompactItemize} |
|---|
| 80 | |
|---|
| 81 | |
|---|
| 82 | \subsection{Detailed Description} |
|---|
| 83 | Gamma random walk around a fixed point. |
|---|
| 84 | |
|---|
| 85 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
|---|
| 86 | |
|---|
| 87 | Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. |
|---|
| 88 | |
|---|
| 89 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. |
|---|
| 90 | |
|---|
| 91 | \subsection{Member Function Documentation} |
|---|
| 92 | \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} |
|---|
| 93 | \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} |
|---|
| 94 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec mpdf::samplecond (const vec \& {\em cond}, \/ double \& {\em ll})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classmpdf_3f172b79ec4a5ebc87898a5381141f1b} |
|---|
| 95 | |
|---|
| 96 | |
|---|
| 97 | Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. |
|---|
| 98 | |
|---|
| 99 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} |
|---|
| 100 | \item[Parameters:] |
|---|
| 101 | \begin{description} |
|---|
| 102 | \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
|---|
| 103 | \end{Desc} |
|---|
| 104 | |
|---|
| 105 | |
|---|
| 106 | References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). |
|---|
| 107 | |
|---|
| 108 | Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} |
|---|
| 109 | \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} |
|---|
| 110 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classmpdf_0e37163660f93df2a4d723cedb1da89c} |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | Returns. |
|---|
| 114 | |
|---|
| 115 | \begin{Desc} |
|---|
| 116 | \item[Parameters:] |
|---|
| 117 | \begin{description} |
|---|
| 118 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
|---|
| 119 | \end{Desc} |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). |
|---|
| 123 | |
|---|
| 124 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
|---|
| 125 | \item |
|---|
| 126 | work/git/mixpp/bdm/stat/{\bf libEF.h}\end{CompactItemize} |
|---|