\hypertarget{classmgamma__fix}{ \section{mgamma\_\-fix Class Reference} \label{classmgamma__fix}\index{mgamma\_\-fix@{mgamma\_\-fix}} } Gamma random walk around a fixed point. {\tt \#include $<$libEF.h$>$} Inheritance diagram for mgamma\_\-fix:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=58pt]{classmgamma__fix__inherit__graph} \end{center} \end{figure} Collaboration diagram for mgamma\_\-fix:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=76pt]{classmgamma__fix__coll__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item \hypertarget{classmgamma__fix_b92c3d2e5fd0381033a072e5ef3bcf80}{ \hyperlink{classmgamma__fix_b92c3d2e5fd0381033a072e5ef3bcf80}{mgamma\_\-fix} (const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}, const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{rvc})} \label{classmgamma__fix_b92c3d2e5fd0381033a072e5ef3bcf80} \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item \hypertarget{classmgamma__fix_ec6f846896749e27cb7be9fa48dd1cb1}{ void \hyperlink{classmgamma__fix_ec6f846896749e27cb7be9fa48dd1cb1}{set\_\-parameters} (double k0, vec ref0, double l0)} \label{classmgamma__fix_ec6f846896749e27cb7be9fa48dd1cb1} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item \hypertarget{classmgamma__fix_6ea3931eec7b7da7b693e45981052460}{ void \hyperlink{classmgamma__fix_6ea3931eec7b7da7b693e45981052460}{condition} (const vec \&val)} \label{classmgamma__fix_6ea3931eec7b7da7b693e45981052460} \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item \hypertarget{classmgamma_a9d646cf758a70126dde7c48790b6e94}{ void \hyperlink{classmgamma_a9d646cf758a70126dde7c48790b6e94}{set\_\-parameters} (double \hyperlink{classmgamma_43f733cce0245a52363d566099add687}{k})} \label{classmgamma_a9d646cf758a70126dde7c48790b6e94} \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} \item \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } \label{classmpdf_15ef062183b1ccdf794732d5fa0b77cd} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classmpdf_71256ffb5fbd08f41d650e606a5bd585}{ \hyperlink{classRV}{RV} \hyperlink{classmpdf_71256ffb5fbd08f41d650e606a5bd585}{\_\-rv} () const } \label{classmpdf_71256ffb5fbd08f41d650e606a5bd585} \begin{CompactList}\small\item\em access function \item\end{CompactList}\item \hypertarget{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}{ \hyperlink{classepdf}{epdf} \& \hyperlink{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}{\_\-epdf} ()} \label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8} \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item \hypertarget{classmgamma__fix_3f48c09caddc298901ad75fe7c0529f6}{ double \hyperlink{classmgamma__fix_3f48c09caddc298901ad75fe7c0529f6}{l}} \label{classmgamma__fix_3f48c09caddc298901ad75fe7c0529f6} \begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item \hypertarget{classmgamma__fix_81ce49029ecc385418619b200dcafeb0}{ vec \hyperlink{classmgamma__fix_81ce49029ecc385418619b200dcafeb0}{refl}} \label{classmgamma__fix_81ce49029ecc385418619b200dcafeb0} \begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item \hypertarget{classmgamma_612dbf35c770a780027619aaac2c443e}{ \hyperlink{classegamma}{egamma} \hyperlink{classmgamma_612dbf35c770a780027619aaac2c443e}{epdf}} \label{classmgamma_612dbf35c770a780027619aaac2c443e} \begin{CompactList}\small\item\em Internal \hyperlink{classepdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item \hypertarget{classmgamma_43f733cce0245a52363d566099add687}{ double \hyperlink{classmgamma_43f733cce0245a52363d566099add687}{k}} \label{classmgamma_43f733cce0245a52363d566099add687} \begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item \hypertarget{classmgamma_5e90652837448bcc29707e7412f99691}{ vec $\ast$ \hyperlink{classmgamma_5e90652837448bcc29707e7412f99691}{\_\-beta}} \label{classmgamma_5e90652837448bcc29707e7412f99691} \begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item \hypertarget{classmpdf_f6687c07ff07d47812dd565368ca59eb}{ \hyperlink{classRV}{RV} \hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}} \label{classmpdf_f6687c07ff07d47812dd565368ca59eb} \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item \hypertarget{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{ \hyperlink{classRV}{RV} \hyperlink{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{rvc}} \label{classmpdf_acb7dda792b3cd5576f39fa3129abbab} \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item \hypertarget{classmpdf_7aa894208a32f3487827df6d5054424c}{ \hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classmpdf_7aa894208a32f3487827df6d5054424c}{ep}} \label{classmpdf_7aa894208a32f3487827df6d5054424c} \begin{CompactList}\small\item\em pointer to internal \hyperlink{classepdf}{epdf} \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Gamma random walk around a fixed point. Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection{Member Function Documentation} \hypertarget{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{ \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec mpdf::samplecond (const vec \& {\em cond}, \/ double \& {\em ll})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classmpdf_3f172b79ec4a5ebc87898a5381141f1b} Returns the required moment of the \hyperlink{classepdf}{epdf}. Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} Returns. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} \end{Desc} Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). The documentation for this class was generated from the following file:\begin{CompactItemize} \item work/git/mixpp/bdm/stat/\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}